Raychaudhuri Equation, Geometrical Flows and Geometrical Entropy
Abstract
:1. Introduction
2. Raychaudhuri Equation from Geometric Flow
3. Raychaudhuri Equation in Harmonic Oscillator Form
4. Raychaudhuri Equation in Harmonic Oscillator Form: With the Acceleration Term
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raychaudhuri, A. Relativistic cosmology. 1. Phys. Rev. 1955, 98, 1123. [Google Scholar] [CrossRef]
- Ehlers, J.A.K. Raychaudhuri and his equation. Int. J. Mod. Phys. D 2006, 15, 1573. [Google Scholar] [CrossRef] [Green Version]
- Kar, S. An introduction to the Raychaudhuri equations. Reson. J. Sci. Educ. 2008, 13, 319. [Google Scholar] [CrossRef]
- Dadhich, N. Derivation of the Raychaudhuri equation. arXiv 2005, arXiv:gr-qc/0511123. [Google Scholar]
- Senovilla, J.M.M.; Garfinkle, D. The 1965 Penrose singularity theorem. Class. Quantum Gravity 2015, 32, 124008. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Gravitational collapse and space–time singularities. Phys. Rev. Lett. 1965, 14, 57. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Quantum Raychaudhuri equation. Phys. Rev. D 2014, 89, 084068. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.F.; Das, S. Cosmology from quantum potential. Phys. Lett. B 2015, 741, 276. [Google Scholar] [CrossRef] [Green Version]
- Alsaleh, S.; Alasfar, L.; Faizal, M.; Ali, A.F. Quantum no-singularity theorem from geometric flows. Int. J. Mod. Phys. A 2018, 33, 1850052. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, G.; Strauss, Y.; Bondarenko, S.; Yahalom, A.; Lewkowicz, M.; Horwitz, L.P.; Levitan, J. Entropy measures as geometrical tools in the study of cosmology. Entropy 2017, 20, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwitz, L.; Levitan, J.; Lewkowicz, M.; Schiffer, M.; Ben Zion, Y.B. On the geometry of Hamiltonian chaos. Phys. Rev. Lett. 2007, 98, 234301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, Y.; Horwitz, L.P.; Levitan, J.; Yahalom, A. Quantum field theory of classically unstable Hamiltonian dynamics. J. Math. Phys. 2015, 56, 072701. [Google Scholar] [CrossRef] [Green Version]
- Rajeev, S.G. Curvature in Hamiltonian Mechanics And The Einstein-Maxwell-Dilaton Action. J. Math. Phys. 2017, 58, 052901. [Google Scholar] [CrossRef] [Green Version]
- Katok, A. Entropy and closed geodesies. Ergod. Theory Dyn. Syst. 1982, 2, 339. [Google Scholar] [CrossRef] [Green Version]
- Kapovich, I.; Nagnibeda, T. The Patterson–Sullivan embedding and minimal volume entropy for outer space. Geom. Funct. Anal. 2007, 17, 1201. [Google Scholar] [CrossRef] [Green Version]
- Besson, G.; Courtois, G.; Gallot, S. Minimal entropy and Mostow’s rigidity theorems. Ergod. Theory Dyn. Syst. 1996, 16, 623. [Google Scholar] [CrossRef]
- Manning, A. The volume entropy of a surface decreases along the Ricci flow. Ergod. Theory Dyn. Syst. 2004, 24, 171. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; SenGupta, S. The Raychaudhuri equations: A Brief review. Pramana 2007, 69, 49–76. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, R.; Viswanathan, K.S.; DeBenedictis, A. Classical defocussing of world lines in higher dimensions. Ann. Phys. 2018, 398, 1. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, R. Classical defocussing of world lines—Cosmological Implications. Ann. Phys. 2020, 415, 168115. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horwitz, L.P.; Namboothiri, V.S.; Varma K, G.; Yahalom, A.; Strauss, Y.; Levitan, J. Raychaudhuri Equation, Geometrical Flows and Geometrical Entropy. Symmetry 2021, 13, 957. https://doi.org/10.3390/sym13060957
Horwitz LP, Namboothiri VS, Varma K G, Yahalom A, Strauss Y, Levitan J. Raychaudhuri Equation, Geometrical Flows and Geometrical Entropy. Symmetry. 2021; 13(6):957. https://doi.org/10.3390/sym13060957
Chicago/Turabian StyleHorwitz, Lawrence Paul, Vishnu S Namboothiri, Gautham Varma K, Asher Yahalom, Yosef Strauss, and Jacob Levitan. 2021. "Raychaudhuri Equation, Geometrical Flows and Geometrical Entropy" Symmetry 13, no. 6: 957. https://doi.org/10.3390/sym13060957
APA StyleHorwitz, L. P., Namboothiri, V. S., Varma K, G., Yahalom, A., Strauss, Y., & Levitan, J. (2021). Raychaudhuri Equation, Geometrical Flows and Geometrical Entropy. Symmetry, 13(6), 957. https://doi.org/10.3390/sym13060957