Two New Bailey Lattices and Their Applications
Abstract
:1. Introduction, Motivation and Preliminaries
2. A Set of Lemmas
3. Main Results and Their Demonstration
4. Two New Bailey Transformations
5. Mock Theta Function
6. Concluding Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gasper, G.; Rahman, M. Encyclopedia of Mathematics and Its Applications 35. In Basic Hypergeometric Series; Rota, B.-C., Ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Srivastava, H.M.; Arjika, S.; Kelil, A.S. Some homogeneous q-difference operators and the associated generalized Hahn polynomials. Appl. Set-Valued Anal. Optim. 2019, 1, 187–201. [Google Scholar]
- Srivastava, H.M.; Cao, J.; Arjika, S. A note on generalized q-difference equations and their applications involving q-hypergeometric functions. Symmetry 2020, 12, 1816. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Ahmad, Q.Z.; Tahir, M. Applications of Certain Conic Domains to a Subclass of q-Starlike Functions Associated with the Janowski Functions. Symmetry 2021, 13, 574. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Watson, G.N. The final problem: An account of the mock theta functions. J. Lond. Math. Soc. 1936, 11, 55–80. [Google Scholar] [CrossRef]
- Andrews, G.E.; Berndt, B. Ramanujan’s Lost Notebook; Part I; Springer: New York, NY, USA, 2009. [Google Scholar]
- Choi, Y.-S. Tenth order mock theta functions in Ramanujan’s lost notebook. Invent. Math. 1999, 136, 497–569. [Google Scholar] [CrossRef]
- Choi, Y.-S. Tenth order mock theta functions in Ramanujan’s lost notebook (II). Adv. Math. 2000, 156, 180–285. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-S. Tenth order mock theta functions in Ramanujan’s lost notebook (IV). Trans. Am. Math. Soc. 2002, 354, 705–733. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-S. Identities for Ramanujan’s sixth order mock theta functions. Quart. J. Math. 2002, 53, 147–159. [Google Scholar] [CrossRef]
- Berndt, B.; Chan, S.H. Sixth order mock theta functions. Adv. Math. 2007, 216, 771–786. [Google Scholar] [CrossRef] [Green Version]
- Gordon, B.; McIntosh, R.J. Some eighth order mock theta functions. J. Lond. Math. Soc. 2000, 62, 321–335. [Google Scholar] [CrossRef]
- Gordon, B.; McIntosh, R.J. A survey of classical mock theta functions, in: Partitions, q-series, and Modular Forms. Dev. Math. 2012, 23, 95–144. [Google Scholar]
- McIntosh, R.J. Second order mock theta functions. Can. Math. Bull. 2007, 50, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Bailey, W.N. Identities of the Rogers-Ramanujan type. Proc. Lond. Math. Soc. 1949, 50, 1–10. [Google Scholar] [CrossRef]
- Andrews, G.E. Multiple series Rogers-Ramanujan type identities. Pac. J. Math. 1984, 114, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Andrews, G.E. q-Series: Their Development; CBMS Regional Conference Lecture Series; American Mathematical Society: Providence, RI, USA, 1986; p. 66. [Google Scholar]
- Warnaar, S.O. 50 years of Bailey’s lemma. In Algebraic Combinatorics and Applications; Springer: Berlin, Germany, 2009; pp. 333–347. [Google Scholar]
- Agarwal, A.K.; Andrews, G.E.; Bressoud, D. The Bailey lattice. J. Indian Math. Soc. 1987, 51, 57–73. [Google Scholar]
- Bressoud, D.M. The Bailey Lattice: An Introduction; Ramanujan Revisited (Urbana-Champaign, Ill. (1987)); Academic Press: Boston, MA, USA, 1988; pp. 57–67. [Google Scholar]
- Schilling, A.; Warnaar, S.O. A higher level Bailey lemma: Proof and applications. Ramanujan J. 1998, 2, 327–349. [Google Scholar] [CrossRef]
- Jia, Z.; Zeng, J. Expansions in Askey-Wilson polynomials via Bailey transform. J. Math. Anal. Appl. 2017, 452, 1082–1100. [Google Scholar] [CrossRef] [Green Version]
- Bressoud, D.M. Some identities for terminating q-series. Math. Proc. Camb. Philos. Soc. 1981, 89, 211–223. [Google Scholar] [CrossRef]
- Bressoud, D.M.; Ismail, M.; Stanton, D. Change of base in Bailey pairs. Ramanujan J. 2007, 4, 771–786. [Google Scholar]
- Zhang, Z.; Wu, Y. A U(n+1) Bailey lattice. J. Math. Anal. Appl. 2015, 426, 747–764. [Google Scholar] [CrossRef]
- Verma, A.; Jain, V.K. Transformations between basic hypergeometric series on different bases and identities of rogers-ramanujan type. J. Math. Anal. Appl. 1980, 76, 230–269. [Google Scholar] [CrossRef]
- Lovejoy, J.; Osburn, R. The Bailey chain and mock theta functions. Adv. Math. 2013, 238, 442–458. [Google Scholar] [CrossRef]
- Lovejoy, J. Bailey pairs and indefinite quadratic forms. J. Math. Anal. Appl. 2014, 410, 1002–1013. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Andrews, G.E.; Hickerson, D.R. Ramanujan’s Lost Notebook: The sixth order mock theta functions. Adv. Math. 1991, 89, 60–105. [Google Scholar] [CrossRef] [Green Version]
- Stanton, D. The Bailey-Rogers-Ramanujan group in: q-Series with Applications to Combinatorics, Number Theory, and Physics. Contemp. Math. 2001, 291, 55–70. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Khan, B.; Agarwal, P.; Hu, Q.; Wang, X. Two New Bailey Lattices and Their Applications. Symmetry 2021, 13, 958. https://doi.org/10.3390/sym13060958
Jia Z, Khan B, Agarwal P, Hu Q, Wang X. Two New Bailey Lattices and Their Applications. Symmetry. 2021; 13(6):958. https://doi.org/10.3390/sym13060958
Chicago/Turabian StyleJia, Zeya, Bilal Khan, Praveen Agarwal, Qiuxia Hu, and Xinjing Wang. 2021. "Two New Bailey Lattices and Their Applications" Symmetry 13, no. 6: 958. https://doi.org/10.3390/sym13060958
APA StyleJia, Z., Khan, B., Agarwal, P., Hu, Q., & Wang, X. (2021). Two New Bailey Lattices and Their Applications. Symmetry, 13(6), 958. https://doi.org/10.3390/sym13060958