Stability of Bi-Additive Mappings and Bi-Jensen Mappings
Abstract
:1. Introduction
2. Solution and Stability of a Bi-Additive Functional Equation
3. Solution and Stability of a Bi-Jensen Functional Equation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aoki, T. On the stability of linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Rassias, T.M. On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 1991, 158, 106–113. [Google Scholar] [CrossRef]
- Jung, S.-M. Hyers-Ulam-Rassias stability of Jensen’s equation and its application. Proc. Am. Math. Soc. USA 1998, 126, 3137–3143. [Google Scholar] [CrossRef] [Green Version]
- Găvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. On the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1996, 204, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Jun, K.-W. A generalization of the Hyers-Ulam-Rassias stability of Jensen’s equation. J. Math. Anal. Appl. 1999, 238, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.-H.; Park, W.-G. On the solution of a bi-Jensen functional equation and its stability. Bull. Korean Math. Soc. 2006, 43, 499–507. [Google Scholar] [CrossRef]
- Jun, K.-W.; Jung, I.-S.; Lee, Y.-H. Stability of a Bi-Jensen Functional Equation II. J. Inequl. Appl. 2009. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.-H.; Park, W.-G. Stability of a Cauchy-Jensen functional equation in quasi-Banach spaces. J. Inequl. Appl. 2010, 2010, 151547. [Google Scholar] [CrossRef] [Green Version]
- Gahler, S. 2-metrische Raume und ihre topologische Struktur. Math. Nachr. 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Gahler, S. Lineare 2-normierte Raumen. Math. Nachr. 1964, 28, 1–43. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Kim, A.; Park, J. On the Hyers-Ulam stabilities of functional equations on n-Banach spaces. Math. Nachr. 2016, 289, 1177–1188. [Google Scholar] [CrossRef]
- Benyamini, Y.; Lindenstrauss, J. Geometric Nonlinear Functional Analysis: Volume 1; Colloquium Publications, American Mathematical Society: Providence, RI, USA, 2000; Volume 48. [Google Scholar]
- Rolewicz, S. Metric Linear Spaces, 2nd ed.; PWN—Polish Scientific Publishers: Warsaw, Poland; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1984; p. xi+459. [Google Scholar]
- Najati, A.; Moghimi, M.B. Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach space. J. Math. Anal. Appl. 2008, 337, 399–415. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.-H.; Park, W.-G. Stability of Bi-Additive Mappings and Bi-Jensen Mappings. Symmetry 2021, 13, 1180. https://doi.org/10.3390/sym13071180
Bae J-H, Park W-G. Stability of Bi-Additive Mappings and Bi-Jensen Mappings. Symmetry. 2021; 13(7):1180. https://doi.org/10.3390/sym13071180
Chicago/Turabian StyleBae, Jae-Hyeong, and Won-Gil Park. 2021. "Stability of Bi-Additive Mappings and Bi-Jensen Mappings" Symmetry 13, no. 7: 1180. https://doi.org/10.3390/sym13071180
APA StyleBae, J. -H., & Park, W. -G. (2021). Stability of Bi-Additive Mappings and Bi-Jensen Mappings. Symmetry, 13(7), 1180. https://doi.org/10.3390/sym13071180