The Phase Transition Analysis for the Random Regular Exact 2-(d, k)-SAT Problem
Abstract
:1. Introduction
2. Preliminaries
2.1. Random Regular Exact 2-()-SAT Problem
2.2. Random Regular ()-SAT Instance Generation Model
2.3. Phase Change Analysis Technique
- (1)
- When , almost certainly model M does not have property Q.
- (2)
- When , almost certainly model M has property Q.Then, the property Q has a phase change, and the function is called criticality (or threshold).
3. Main Results
4. Numerical Experiment and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, D.Y. Reduction Techniques for Satisfiability Problems. Stud. Logic. 2012, 5, 98–111. [Google Scholar] [CrossRef]
- Xu, D.; Wang, X. A regular NP-complete problem and it’s inaproximability. J. Front. Comput. Sci. Technol. 2013, 7, 691–697. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Selman, B. Critical behavior in the satisfiability of random Boolean Formulae. Science 1994, 264, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Mertens, S.; Mezard, M.; Zecchina, R. Threshold values of random k-SAT from the cavity method. Random Struct. Algorithms 2006, 28, 340–373. [Google Scholar] [CrossRef] [Green Version]
- Krzakała, F.; Montanari, A.; Ricci-Tersenghi, F.; Semerjian, G.; Zdeborová, L. Gibbs states and the set of solutions of random constraint satisfaction Problems. Proc. Natl. Acad. Sci. USA 2007, 104, 10318–10323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Shen, J. On the phase transitions of random k-constraint satisfaction problems. Artif. Intell. 2011, 175, 914–927. [Google Scholar] [CrossRef] [Green Version]
- Kaporis, A.; Kirousis, L.; Lalas, E. The probabilistic analysis of a greedy satisfiability algorithm. Random Struct. Algorithms 2006, 28, 444–448. [Google Scholar] [CrossRef]
- Díaz, J.; Kirousis, L.; Mitsche, D.; Pérez-Giménez, X. On the satisfiability threshold of formulas with three literals per clause. Theor. Comput. Sci. 2009, 410, 2920–2934. [Google Scholar] [CrossRef] [Green Version]
- Aurell, E.; Gordon, U.; Kirkkpatrick, S. Comparing beliefs, surveys, and random walks. Adv. Neural Inf. Process. Syst. 2004, 17, 1–8. [Google Scholar]
- Braunstein, A.; Zecchina, R. Survey and belief propagation on random k-SAT. Lect. Notes Comput. Sci. 2004, 2919, 519–528. [Google Scholar] [CrossRef]
- Boufkhad, Y.; Dubois, O.; Interian, Y.; Selman, B. Regular random k-sat: Properties of balanced formulas. J. Autom. Reason. 2005, 35, 181–200. [Google Scholar] [CrossRef]
- Rathi, V.; Aurell, E.; Rasmussen, L.K.; Skoglund, M. Bounds on Threshold of Regular Random k-SAT. Lect. Notes Comput. Sci. 2010, 6175, 264–277. [Google Scholar] [CrossRef]
- Jian, D.; Sly, A.; Nike, S. Satisfiability threshold for random regular NAE-SAT. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 31 May–3 June 2014; pp. 814–822. [Google Scholar] [CrossRef] [Green Version]
- Achlioptas, D.; Chtcherba, A.; Istrate, G.; Moore, C. The phase transition in 1-in-k SAT and NAE 3-SAT. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, USA, 7–9 January 2001; pp. 721–722. [Google Scholar] [CrossRef]
- Achioptas, D.; Moore, C. RANDOM k-SAT: Two moments suffice to cross a sharp threshold. SIAM J. Comput. 2006, 36, 740–762. [Google Scholar] [CrossRef] [Green Version]
- Moore, C. The phase transition in random regular exact cover. Annales l’Institut Henri Poincaré D 2016, 3, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Kalapala, V.; Moore, C. The phase transition in exact cover. Chic. J. Theor. Comput. 2008, 5, 9. [Google Scholar] [CrossRef]
- Mo, X.; Xu, D.; Wang, X. The Phase Transition Analysis for Random Regular Exact (s,c,k)-SAT Problem. IEEE Access 2021, 9, 26664–26673. [Google Scholar] [CrossRef]
- Mitzenmacher, M.; Upfal, E. Probability and Computing; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, G.; Xu, D.; Wang, X.; Wang, X. The Phase Transition Analysis for the Random Regular Exact 2-(d, k)-SAT Problem. Symmetry 2021, 13, 1231. https://doi.org/10.3390/sym13071231
Nie G, Xu D, Wang X, Wang X. The Phase Transition Analysis for the Random Regular Exact 2-(d, k)-SAT Problem. Symmetry. 2021; 13(7):1231. https://doi.org/10.3390/sym13071231
Chicago/Turabian StyleNie, Guoxia, Daoyun Xu, Xiaofeng Wang, and Xi Wang. 2021. "The Phase Transition Analysis for the Random Regular Exact 2-(d, k)-SAT Problem" Symmetry 13, no. 7: 1231. https://doi.org/10.3390/sym13071231
APA StyleNie, G., Xu, D., Wang, X., & Wang, X. (2021). The Phase Transition Analysis for the Random Regular Exact 2-(d, k)-SAT Problem. Symmetry, 13(7), 1231. https://doi.org/10.3390/sym13071231