A Novel Single-Loop Mechanism and the Associated Cylindrical Deployable Mechanisms
Abstract
:1. Introduction
2. A 2-DOF Cylindrical DM Unit
2.1. The Sarrus Mechanism
2.2. A Novel 8R Mechanism
2.3. Motion Pattern Analysis of the 8R Mechanism
2.4. Kinematics of the 8R Mechanism
3. 2-DOF Cylindrical DMs Composed of 8R DUs
4. Magnification Ratio Analysis for the 2-DOF DMs
4.1. Definition of Circumferential and Axial Magnification Ratios
4.2. Interference Case I: The Interference between Circular Links
4.3. Interference Case II: The Interference between Planar Links
4.4. Magnification Ratio
4.5. Optimization of the Magnification Ratio
5. 1-DOF DMs Based on 6R DUs
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Guest, S.D.; Pellegrino, S. A new concept for solid surface deployable antennas. Acta Astronaut. 1996, 38, 103–113. [Google Scholar] [CrossRef]
- You, Z. Deployable structure of curved profile for space antennas. J. Aerosp. Eng. 2000, 13, 139–143. [Google Scholar] [CrossRef]
- Song, X.; Deng, Z.; Guo, H.; Liu, R.; Li, L.; Liu, R. Networking of Bennett linkages and its application on deployable parabolic cylindrical antenna. Mech. Mach. Theory 2017, 109, 95–125. [Google Scholar] [CrossRef]
- Guang, C.; Yang, Y. Single-vertex multicrease rigid origami with nonzero thickness and its transformation into deployable mechanisms. J. Mech. Robot. 2018, 10, 011010. [Google Scholar] [CrossRef]
- Guang, C.; Yang, Y. An approach to designing deployable mechanisms based on rigid modified origami flashers. J. Mech. Des. 2018, 140, 082301. [Google Scholar] [CrossRef]
- Kumar, P.; Pellegrino, S. Deployment and retraction of a cable-driven rigid panel solar array. J. Spacecr. Rocket. 1996, 33, 836–842. [Google Scholar] [CrossRef]
- Zirbel, S.A. Compliant Mechanisms for Deployable Space Systems; Brigham Young University: Provo, UT, USA, 2014. [Google Scholar]
- Adrover, E.R. Deployable Structures; Laurence King Publishing: London, UK, 2015. [Google Scholar]
- Cai, J.; Deng, X.; Xu, Y.; Feng, J. Geometry and motion analysis of origami-based deployable shelter structures. J. Struct. Eng. 2015, 141, 06015001. [Google Scholar] [CrossRef]
- Kassabian, P.; You, Z.; Pellegrino, S. Retractable roof structures. Proc. Inst. Civ. Eng. Struct. Build. 1999, 134, 45–56. [Google Scholar] [CrossRef]
- Delaney, F. Deployment Mechanism for a Retractable Roof System for a Large Building Structure. Google Patent Application No. 8635813B2, 28 January 2014. [Google Scholar]
- Chen, Y.; Yan, J.; Feng, J. Geometric and kinematic analyses and novel characteristics of origami-inspired structures. Symmetry 2019, 11, 1101. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Jin, M.; Duan, J.; Li, J.; Fu, H.; Zhao, L.; Xu, Z.; Ding, Y.; Jiang, Y.; Yang, Z. Design and experiment of banana de-handing device based on symmetrical shape deployable mechanism. Symmetry 2020, 12, 415. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; You, Z. On mobile assemblies of Bennett linkages. Proc. R. Soc. A Math. Phys. Eng. Sci. 2008, 464, 1275–1293. [Google Scholar] [CrossRef]
- Chen, Y.; You, Z.; Tarnai, T. Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 2005, 42, 2287–2301. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, Y. Myard linkage and its mobile assemblies. Mech. Mach. Theory 2009, 44, 1950–1963. [Google Scholar] [CrossRef]
- Cao, W.A.; Zhang, D.; Ding, H. A novel two-layer and two-loop deployable linkage with accurate vertical straight-line motion. J. Mech. Des. 2020, 142, 103301. [Google Scholar] [CrossRef]
- Lu, S.; Zlatanov, D.; Ding, X. Approximation of cylindrical surfaces with deployable Bennett networks. J. Mech. Robot. 2017, 9, 021001. [Google Scholar] [CrossRef]
- Huang, H.; Deng, Z.; Li, B. Mobile assemblies of large deployable mechanisms. J. Space Eng. 2012, 5, 1–14. [Google Scholar] [CrossRef]
- Murphy, D.; McEachen, M.; Macy, B.; Gaspar, J. Demonstration of a 20-m Solar Sail System. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005; pp. 1–17. [Google Scholar]
- Ding, X.; Yang, Y.; Dai, J.S. Design and kinematic analysis of a novel prism deployable mechanism. Mech. Mach. Theory 2013, 63, 35–49. [Google Scholar] [CrossRef]
- Zirbel, S.A.; Lang, R.J.; Thomson, M.W.; Sigel, D.A.; Walkemeyer, P.E.; Trease, B.P.; Magleby, S.P.; Howell, L.L. Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 2013, 135, 111005. [Google Scholar] [CrossRef]
- Tan, L.T.; Pellegrino, S. Thin-shell deployable reflectors with collapsible stiffeners Part 1: Approach. AIAA J. 2006, 44, 2515–2523. [Google Scholar] [CrossRef] [Green Version]
- Mallikarachchi, H.; Pellegrino, S. Design and validation of thin-walled composite deployable booms with tape-spring hinges. In Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 4–7 April 2011; pp. 2011–2019. [Google Scholar]
- Sakovsky, M.; Pellegrino, S. Closed cross-section dual-matrix composite hinge for deployable structures. Compos. Struct. 2019, 208, 784–795. [Google Scholar] [CrossRef]
- Deng, Z.; Huang, H.; Li, B.; Liu, R. Synthesis of deployable/foldable single loop mechanisms with revolute joints. J. Mech. Robot. 2011, 3, 031006. [Google Scholar] [CrossRef]
- Li, B.; Huang, H.; Deng, Z. Mobility analysis of symmetric deployable mechanisms involved in a coplanar 2-twist screw system. J. Mech. Robot. 2016, 8, 011007. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Kumar, S.; Yim, M. Polyhedral single degree-of-freedom expanding structures: Design and prototypes. J. Mech. Des. 2002, 124, 473–478. [Google Scholar] [CrossRef]
- Kiper, G. Fulleroid-like linkages. In Proceedings of the EUCOMES 08, Cassino, Italy, 17–20 September 2008; pp. 423–430. [Google Scholar]
- Kiper, G.; Söylemez, E. Regular Polygonal and Regular Spherical Polyhedral Linkages Comprising Bennett Loops. In Computational Kinematics; Springer: Berlin, Germany, 2009; pp. 249–256. [Google Scholar]
- Wei, G.; Dai, J.S. A spatial eight-bar linkage and its association with the deployable platonic mechanisms. J. Mech. Robot. 2014, 6, 021010. [Google Scholar] [CrossRef]
- You, Z.; Pellegrino, S. Foldable bar structures. Int. J. Solids. Struct. 1997, 34, 1825–1847. [Google Scholar] [CrossRef]
- Zhao, J.S.; Chu, F.; Feng, Z.J. The mechanism theory and application of deployable structures based on SLE. Mech. Mach. Theory 2009, 44, 324–335. [Google Scholar] [CrossRef]
- Bai, G.; Liao, Q.; Li, D.; Wei, S. Synthesis of scaling mechanisms for geometric figures with angulated-straight elements. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 227, 2795–2809. [Google Scholar] [CrossRef]
- Hoberman, C. Reversibly Expandable Structures Having Polygon Links. Google Patent Application No. 6219974B1, 24 April 2001. [Google Scholar]
- Hoberman, C. Geared Expanding Structures. Google Patent Application No. 7464503B2, 16 December 2008. [Google Scholar]
- Hoberman, C. Transformation in architecture and design. Transp. Environ. 2006, 3, 70–73. [Google Scholar]
- Roovers, K.; De Temmerman, N. Deployable scissor grids consisting of translational units. Int. J. Solids Struct. 2017, 121, 45–61. [Google Scholar] [CrossRef]
- Schulze, B.; Whiteley, W. The orbit rigidity matrix of a symmetric framework. Discrete. Comput. Geom. 2011, 46, 561–598. [Google Scholar] [CrossRef]
- Sareh, P.; Chen, Y. Intrinsic non-flat-foldability of two-tile ddc surfaces composed of glide-reflected irregular quadrilaterals. Int. J. Mech. Sci. 2020, 185, 105881. [Google Scholar] [CrossRef]
- Sareh, P. The least symmetric crystallographic derivative of the developable double corrugation surface: Computational design using underlying conic and cubic curves. Mater. Des. 2019, 183, 108128. [Google Scholar] [CrossRef]
- Baker, J. An analysis of the bricard linkages. Mech. Mach. Theory 1980, 15, 267–286. [Google Scholar] [CrossRef]
- Baker, J. Limiting positions of a bricard linkage and their possible relevance to the cyclohexane molecule. Mech. Mach. Theory 1986, 21, 253–260. [Google Scholar] [CrossRef]
- Sarrus, P. Note Sur la Transformation des Mouvements Rectilignes Alternatifs, en Mouvements Circulaires, et Reciproquement, Comptes. Rendus. Acad. Sci. Paris 1853, 36, 1036. [Google Scholar]
- Chen, G.M.; Zhang, S.Y.; Li, G. Multistable behaviors of compliant Sarrus mechanisms. J. Mech. Robot. 2013, 5, 021005. [Google Scholar] [CrossRef]
- Liu, R.; Yao, Y.A.; Li, Y. Design and analysis of a deployable tetrahedron-based mobile robot constructed by Sarrus linkages. Mech. Mach. Theory 2020, 152, 103964. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Z. Mobility analysis of lower-mobility parallel manipulators based on screw theory. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14–19 September 2003; pp. 1179–1184. [Google Scholar]
- Yu, J.; Dong, X.; Pei, X.; Kong, X. Mobility and singularity analysis of a class of two degrees of freedom rotational parallel mechanisms using a visual graphic approach. J. Mech. Robot. 2012, 4, 41006. [Google Scholar] [CrossRef]
- Kong, X.; Gosselin, C.M. Type Synthesis of Parallel Mechanisms; Springer: Berlin, Germany, 2010; Chapter 3. [Google Scholar]
- Huang, Z.; Liu, J.; Zeng, D. A general methodology for mobility analysis of mechanisms based on constraint screw theory. Sci. China Technol. Sci. 2009, 52, 1337–1347. [Google Scholar] [CrossRef]
- Gogu, G. Mobility of mechanisms: A critical review. Mech. Mach. Theory 2005, 40, 1068–1097. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, C.; Wang, H.; Chen, S. Nonlinear tribo-dynamic model and experimental verification of a spur gear drive under loss-of-lubrication condition. Mech. Syst. Signal Process. 2021, 153, 107509. [Google Scholar] [CrossRef]
- Huang, L.; Yin, L.; Liu, B.; Yang, Y. Design and Error Evaluation of Planar 2DOF Remote Center of Motion Mechanisms with Cable Transmissions. J. Mech. Des. 2021, 143, 1–14. [Google Scholar] [CrossRef]
Parameters | Symbols |
---|---|
Length of the planar links (A11C11, C11A12, A21C21, C21A22) | l |
Radius of the circular links (A11B11, B11A21, A12B12, B12A22) | r |
Twist angle of the circular links (A11B11, B11A21, A12B12, B12A22) | α |
Parameters | Values |
---|---|
Radius of the circular links (r) | 1000 mm |
Length of the planar links (l) | 250 mm |
Twist angle of the circular links (α) | π/12 |
Width of the planar links and circular links (s) | 16 mm |
Thickness of the planar links and circular links (t) | 8 mm |
The number of DUs in the circumferential direction (m) | 6 |
The number of DUs in the axial direction (n) | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Liu, B.; Yin, L.; Wang, J. A Novel Single-Loop Mechanism and the Associated Cylindrical Deployable Mechanisms. Symmetry 2021, 13, 1255. https://doi.org/10.3390/sym13071255
Huang L, Liu B, Yin L, Wang J. A Novel Single-Loop Mechanism and the Associated Cylindrical Deployable Mechanisms. Symmetry. 2021; 13(7):1255. https://doi.org/10.3390/sym13071255
Chicago/Turabian StyleHuang, Long, Bei Liu, Lairong Yin, and Jinhang Wang. 2021. "A Novel Single-Loop Mechanism and the Associated Cylindrical Deployable Mechanisms" Symmetry 13, no. 7: 1255. https://doi.org/10.3390/sym13071255
APA StyleHuang, L., Liu, B., Yin, L., & Wang, J. (2021). A Novel Single-Loop Mechanism and the Associated Cylindrical Deployable Mechanisms. Symmetry, 13(7), 1255. https://doi.org/10.3390/sym13071255