Electroweak Effects in e+e−→ZH Process
Abstract
:1. Introduction
2. ISR Corrections in LLA Approximation
2.1. General Notes
- I.
- The Born kinematics: additional contributions to Born+Soft+Virt.
- II.
- One hard photon collinear to the first initial particle with possible soft and/or virtual (Soft+Virt) corrections to the second one. Hereafter “One hard photon” means “at least one hard photon in the same direction”.
- III.
- Soft+Virt to the first initial particle and one hard photon along the second initial particle.
- IV.
- One hard photon along the first initial particle and one along the second one.
- •
- The first lower index below denotes the order in .
- •
- Factorials and coefficients are given explicitly in order to see their structure.
- •
- For pure photonic LLA corrections the traditional shift is carried out, it takes into account part of the next-to-leading (NLO) corrections. However, for pair corrections such a shift is not well justified, and we keep the large log unchanged.
2.2. First Order LLA Contributions
2.3. Second Order LLA Contributions
2.4. Third Order LLA Contributions
2.5. Fourth Order LLA Contributions
2.6. LLA Contributions for Helicity States
2.7. Scheme with Exponentiation
- •
- •
- The exponentiated structure functions include the LLA part of one-loop QED radiative corrections. To avoid double counting with complete one-loop corrections, we need to subtract the first order leading logarithmic terms from one-loop corrections. So, the final result reads
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SM | Standard Model |
QED | quantum electrodynamics |
QCD | quantum chromodynamics |
EW | electroweak |
PW | pure weak |
ISR | initial-state radiation |
RCs | radiative corrections |
c.m.s. | center-of-mass system |
LO | leading-order |
NLO | next-to-leading-order |
NNLO | next-to-next-to-leading-order |
References
- Baer, H.; Barklow, T.; Fujii, K.; Gao, Y.; Hoang, A.; Kanemura, S.; List, J.; Logan, H.E.; Nomerotski, A.; Perelstein, M.; et al. The International Linear Collider Technical Design Report—Volume 2: Physics. arXiv 2013, arXiv:1306.6352. [Google Scholar]
- Linssen, L.; Miyamoto, A.; Stanitzki, M.; Weerts, H. Physics and Detectors at CLIC: CLIC Conceptual Design Report. arXiv 2012, arXiv:1202.5940. [Google Scholar] [CrossRef]
- CEPC Study Group. CEPC Conceptual Design Report: Volume 2-Physics & Detector. arXiv 2018, arXiv:1811.10545. [Google Scholar]
- FCC Collaboration. FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. Eur. Phys. J. Spec. Top. 2019, 228, 261–623. [Google Scholar] [CrossRef]
- Fan, J.; Reece, M.; Wang, L.T. Possible Futures of Electroweak Precision: ILC, FCC-ee, and CEPC. JHEP 2015, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- An, F.; Bai, Y.; Chen, C.; Chen, X.; Chen, Z.; da Costa, J.G.; Cui, Z.; Fang, Y.; Fu, C.; Gao, J.; et al. Precision Higgs physics at the CEPC. Chin. Phys. C 2019, 43, 043002. [Google Scholar] [CrossRef]
- Blondel, A.; Gluza, J.; Jadach, S.; Janot, P.; Riemann, T. (Eds.) Theory for the FCC-ee: Report on the 11th FCC-ee Workshop Theory and Experiments; CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 2019; Volume 3/2020. [Google Scholar] [CrossRef]
- Kuraev, E.A.; Fadin, V.S. On Radiative Corrections to e+e− Single Photon Annihilation at High-Energy. Sov. J. Nucl. Phys. 1985, 41, 466–472. [Google Scholar]
- Bondarenko, S.; Dydyshka, Y.; Kalinovskaya, L.; Rumyantsev, L.; Sadykov, R.; Yermolchyk, V. One-loop electroweak radiative corrections to polarized e+e−→ZH. Phys. Rev. D 2019, 100, 073002. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.; Montagna, G.; Nicrosini, O.; Piccinini, F.; Volpi, G. ISR corrections to associated HZ production at future Higgs factories. Phys. Lett. B 2018, 777, 294–297. [Google Scholar] [CrossRef]
- Berends, F.A.; van Neerven, W.L.; Burgers, G.J.H. Higher Order Radiative Corrections at LEP Energies. Nucl. Phys. B 1988, 297, 429, [Erratum: Nucl. Phys. B 1988, 304, 921]. [Google Scholar] [CrossRef]
- Blümlein, J.; De Freitas, A.; Raab, C.; Schönwald, K. The O(α2) initial state QED corrections to e+e−→γ*/Z0*. Nucl. Phys. B 2020, 956, 115055. [Google Scholar] [CrossRef]
- Ablinger, J.; Blümlein, J.; De Freitas, A.; Schönwald, K. Subleading Logarithmic QED Initial State Corrections to e+e-→γ*/Z0* to O(α6L5). Nucl. Phys. B 2020, 955, 115045. [Google Scholar] [CrossRef]
- Skrzypek, M. Leading logarithmic calculations of QED corrections at LEP. Acta Phys. Polon. B 1992, 23, 135–172. [Google Scholar]
- Arbuzov, A.B. Nonsinglet splitting functions in QED. Phys. Lett. B 1999, 470, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Arbuzov, A.B. Leading and Next-to-Leading Logarithmic Approximations in Quantum Electrodynamics. Phys. Part. Nucl. 2019, 50, 721–825. [Google Scholar] [CrossRef]
- Altarelli, G.; Parisi, G. Asymptotic Freedom in Parton Language. Nucl. Phys. B 1977, 126, 298–318. [Google Scholar] [CrossRef]
- Cacciari, M.; Deandrea, A.; Montagna, G.; Nicrosini, O. QED structure functions: A Systematic approach. Europhys. Lett. 1992, 17, 123–128. [Google Scholar] [CrossRef]
- Przybycien, M. A Fifth order perturbative solution to the Gribov-Lipatov equation. Acta Phys. Polon. B 1993, 24, 1105–1114. [Google Scholar]
- Arbuzov, A.B.; Fedotovich, G.V.; Kuraev, E.A.; Merenkov, N.P.; Rushai, V.D.; Trentadue, L. Large angle QED processes at e+e− colliders at energies below 3-GeV. JHEP 1997, 10, 001. [Google Scholar] [CrossRef] [Green Version]
- Arbuzov, A.B. Higher order pair corrections to electron positron annihilation. JHEP 2001, 07, 043. [Google Scholar] [CrossRef]
- Sun, Q.F.; Feng, F.; Jia, Y.; Sang, W.L. Mixed electroweak-QCD corrections to e+e−→HZ at Higgs factories. Phys. Rev. D 2017, 96, 051301. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Li, Z.; Xu, X.; Yang, L.L.; Zhao, X. Mixed QCD-EW corrections for Higgs boson production at e+e− colliders. Phys. Rev. D 2017, 95, 093003. [Google Scholar] [CrossRef] [Green Version]
- Jadach, S.; Ward, B. YFS2—The second-order Monte Carlo program for fermion pair production at LEP/SLC, with the initial state radiation of two hard and multiple soft photons. Comput. Phys. Commun. 1990, 56, 351–384. [Google Scholar] [CrossRef]
- Sadykov, R.; Yermolchyk, V. Polarized NLO EW e+e− cross section calculations with ReneSANCe-v1.0.0. Comput. Phys. Commun. 2020, 256, 107445. [Google Scholar] [CrossRef]
- Arbuzov, A.B. Complete NLO EW calculations for the polarized e+e− cross section with MCSANCee-1.0.0 integrator. Comput. Phys. Commun. 2021. to be published. [Google Scholar]
, fb | ||||||||
, % |
, fb | ||||||||
, % |
EW Scheme | |||
---|---|---|---|
, fb | (1) | ||
, fb | |||
, fb | |||
, % |
EW Scheme | |||
---|---|---|---|
, fb | |||
, fb | |||
, fb | |||
, % |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
GeV | ||||
GeV | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arbuzov, A.; Bondarenko, S.; Kalinovskaya, L.; Sadykov, R.; Yermolchyk, V. Electroweak Effects in e+e−→ZH Process. Symmetry 2021, 13, 1256. https://doi.org/10.3390/sym13071256
Arbuzov A, Bondarenko S, Kalinovskaya L, Sadykov R, Yermolchyk V. Electroweak Effects in e+e−→ZH Process. Symmetry. 2021; 13(7):1256. https://doi.org/10.3390/sym13071256
Chicago/Turabian StyleArbuzov, Andrej, Serge Bondarenko, Lidia Kalinovskaya, Renat Sadykov, and Vitaly Yermolchyk. 2021. "Electroweak Effects in e+e−→ZH Process" Symmetry 13, no. 7: 1256. https://doi.org/10.3390/sym13071256
APA StyleArbuzov, A., Bondarenko, S., Kalinovskaya, L., Sadykov, R., & Yermolchyk, V. (2021). Electroweak Effects in e+e−→ZH Process. Symmetry, 13(7), 1256. https://doi.org/10.3390/sym13071256