Feature Ranking and Differential Evolution for Feature Selection in Brushless DC Motor Fault Diagnosis
Abstract
:1. Introduction
2. Experimental Setup and Hardware Design
2.1. Experimental Design
2.2. Experimental Architecture
3. Proposed Method
3.1. Signal Analysis and Feature Extraction
3.2. Feature Selection
- Step 1.
- Calculate the variance and average of all the samples in the mth feature.
- Step 2.
- Calculate the variance and the average of the sample of class C in the mth feature.
- Step 3.
- Calculate the weighted variance of the class center at the mth feature.
- Step 4.
- Calculate the inter-class distance of the mth feature and the intra-class distance of the mth feature.
- Step 5.
- Calculate the variance factor of in the mth feature and the variance factor of in the mth feature.
- Step 6.
- Calculate the compensation factor of the mth feature.
- Step 7.
- Calculate the distance discrimination factor of the mth feature.
- Step 8.
- Normalize the distance discriminant factor.
3.3. Differential Evolution
- Step 1.
- Initially, set the parameters including the number of particles and the number of iterations j. is the first generation input of the first particle of the particle group initially.
- Step 2.
- Calculate the fitness value of the first generation of the first particle.
- Step 3.
- Randomly select the parameters in the offspring , and to produce mutations.
- Step 4.
- The step of crossover is a random operation that bases on rand and CR. If CR is smaller, it means vectors U and G are more similar.
- Step 5.
- The step of elimination obtains a better fitness value through the greedy algorithm.
- Step 6.
- The stopping rule is whether the fitness value has converged, meaning the optimal value. The fitness value is one minus the accuracy rate (1-ACC). If the number of calculations reaches the iterations j, it stops. Otherwise, repeat steps 3 to 5.
- Step 7.
- Finally, all particles converge to obtain the best global solution. After the optimization, a set of solutions can be obtained as the best particle coordinate which is the optimized importance of the feature.
3.4. Classifier
3.4.1. Backpropagation Neural Network
3.4.2. Linear Discriminant Analysis
4. Method Efficiency and Robustness
4.1. Dataset Results
4.2. Identification System Validation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, J.H.; Chun, Y.D.; Han, P.W.; Kim, M.J.; Koo, D.H.; Lee, J.; Chun, J.S. Design of high power permanent magnet motor with segment rectangular copper wire and closed slot opening on electric vehicles. IEEE Trans. Magn. 2010, 46, 2070–2073. [Google Scholar] [CrossRef]
- Usman, A.; Rajpurohit, B.S. Time-efficient fault diagnosis of a BLDC motor drive deployed in electric vehicle applications. In Proceedings of the 2020 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 29 October–1 November 2020; pp. 2377–6919. [Google Scholar]
- Tran, M.K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electr. Veh. J. 2021, 12, 54. [Google Scholar] [CrossRef]
- Panchal, S. Experimental Investigation and Modeling of Lithium-Ion Battery Cells and Packs for Electric Vehicles. Ph.D. Thesis, University of Ontario Institute of Technology, Oshawa, ON, Canada, 2016. [Google Scholar]
- Panchal, S. Impact of Vehicle Charge and Discharge Cycles on the thermal Characteristics of Lithium-Ion Batteries. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2014. [Google Scholar]
- Akhoundzadeh, M.H.; Panchal, S.; Samadani, E.; Raahemifar, K.; Fowler, M.; Fraser, R. Investigation and simulation of electric train utilizing hydrogen fuel cell and lithium-ion battery. Sustain. Energy Technol. Assess. 2021, 46, 101234. [Google Scholar]
- Viaene, J.D.; Verbelen, F.; Derammelaere, S.; Stockman, K. Energy-efficient sensorless load angle control of a BLDC motor using sinusoidal currents. IET Electr. Power Appl. 2018, 12, 1378–1389. [Google Scholar] [CrossRef]
- Mousmi, A.; Abbou, A.; Houm, Y.E. Binary diagnosis of hall effect sensors in brushless dc motor drives. IEEE Trans. Power Electron. 2020, 35, 3859–3868. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, M. Fast fault diagnosis method for hall sensors in brushless DC motor drives. IEEE Trans. Power Electron. 2019, 34, 2585–2596. [Google Scholar] [CrossRef]
- Grubic, S.; Aller, J.M.; Lu, B.; Habetler, T.G. A survey on testing and monitoring methods for stator insulation systems of low-voltage induction machines focusing on turn insulation problems. IEEE Trans. Ind. Electron. 2008, 55, 4127–4136. [Google Scholar] [CrossRef] [Green Version]
- Shamsi-Nejad, M.A.; Nahid-Mobarakeh, B.; Pierfederici, S.; Meibody-Tabar, F. Fault tolerant and minimum loss control of double-star synchronous machines under open phase conditions. IEEE Trans. Ind. Electron. 2008, 55, 1956–1965. [Google Scholar] [CrossRef]
- Zidani, F.; Diallo, D.; Benbouzid, M.E.H.; Nait-Said, R. A fuzzy-based approach for the diagnosis of fault modes in a voltage-fed PWM inverter induction motor drive. IEEE Trans. Ind. Electron. 2008, 55, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, S.; Aller, J.M.; Restrespo, J.A.; Habetler, T.G.; Harley, R.G. A analytic-wavelet-ridge-based detection of dynamic eccentricity in brushless direct current (BLDC) motors functioning under dynamic operating conditions. IEEE Trans. Ind. Electron. 2007, 54, 1410–1419. [Google Scholar] [CrossRef] [Green Version]
- Roux, W.I.; Harley, R.G.; Habetler, T.G. Detecting rotor faults in low power permanent magnet synchronous machines. IEEE Trans. Power Electron. 2007, 22, 322–328. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.; Kim, J.M. High-performance and energy-efficient fault diagnosis using effective envelope analysis and denoising on a general-purpose graphics processing unit. IEEE Trans. Power Electron. 2015, 30, 2763–2776. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.; Kim, J.M.; Tan, A.C.C.; Kim, E.Y.; Choi, B.K. Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis. IEEE Trans. Power Electron. 2015, 30, 2786–2797. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, B.M.; Faiz, J.; Roshtkhari, M.J. Static-, dynamic-, and mixed-eccentricity fault diagnoses in permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 2009, 56, 4727–4739. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhao, J.; Zhou, D.; Huang, C. High-performance fault diagnosis in PWM voltage-source inverters for vector-controlled induction motor drives. IEEE Trans. Power Electron. 2014, 11, 6087–6099. [Google Scholar] [CrossRef]
- Nandi, S.; Toliyat, H.A.; Li, X. Condition monitoring and fault diagnosis of electrical motors—A review. IEEE Trans. Energy Convers. 2005, 20, 719–729. [Google Scholar] [CrossRef]
- Herrera, A.L.M.; Carrillo, L.M.L.; Ramirez, M.L.; Colores, S.S.; Yepez, E.C. Gabor and the Wigner-Ville transforms for broken rotor bars detection in induction motors. In Proceedings of the International Conference on Electronics, Communications and Computers, Cholula, Mexico, 26–28 February 2014. [Google Scholar]
- Osman, S.; Wang, W. A morphological hilbert-huang transform technique for bearing fault detection. IEEE Instrum. Meas. Mag. 2016, 65, 2646–2656. [Google Scholar] [CrossRef]
- Goharrizi, A.Y.; Sepehri, N. Internal leakage detection in hydraulic actuators using empirical mode decomposition and hilbert spectrum. IEEE Trans. Instrum. Meas. 2012, 61, 368–378. [Google Scholar] [CrossRef]
- Song, Q.; Ni, J.; Wang, G. A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans. Knowl. Data Eng. 2013, 25, 1–14. [Google Scholar] [CrossRef]
- Estevez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized mutual information feature selection. IEEE Trans. Neural Netw. 2009, 20, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Lin, F.J.; Chen, C.I.; Lin, J.R. Detection of mechanical resonance frequencies for interior permanent magnet synchronous motor servo drives based on wavelet multiresolution filter. IET J. Eng. 2020, 2020, 827–833. [Google Scholar] [CrossRef]
- Liu, X.Y.; Liang, Y.; Wang, S.; Yang, Z.Y.; Ye, H.S. A hybrid genetic algorithm with wrapper-embedded approaches for feature selection. IEEE Access 2018, 6, 22863–22874. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17, 491–502. [Google Scholar]
- Liu, C.; Wu, C.; Jiang, L. Evolutionary clustering framework based on distance matrix for arbitrary-shaped data sets. IET Signal Process. 2016, 10, 478–485. [Google Scholar] [CrossRef]
- Liang, J.; Yang, S.; Winstanley, A. Invariant optimal feature selection: A distance discriminant and feature ranking based solution. Pattern Recognit. 2008, 41, 1429–1439. [Google Scholar] [CrossRef]
- Fan, Q.; Yan, X. Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies. IEEE Trans. Cybern. 2016, 46, 219–232. [Google Scholar] [CrossRef]
- Filippetti, F.; Franceschini, G.; Tassoni, C.; Vas, P. Recent developments of induction motor drives fault diagnosis using AI techniques. IEEE Trans. Ind. Electron. 2000, 47, 994–1004. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Y.; Zhou, J. Optimized neural network by genetic algorithm and its application in fault diagnosis of three-level inverter. In Proceedings of the 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Xiamen, China, 5–7 July 2019. [Google Scholar]
- Lin, J.W.; Chao, C.T.; Chiou, J.S. Determining neuronal number in each hidden layer using earthquake catalogues as training data in training an embedded back propagation neural network for predicting earthquake magnitude. IEEE Access 2018, 6, 52582–52597. [Google Scholar] [CrossRef]
- Amrutha, J.; Ajai, A.S.R. Performance analysis of backpropagation algorithm of artificial neural networks in verilog. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018. [Google Scholar]
- Abohagar, A.A.; Mustafa, M.W. Back propagation neural network aided wavelet transform for high impedance fault detection and faulty phase selection. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012. [Google Scholar]
- Gaxiola, F.; Melin, P.; Valdez, F.; Castillo, O. Backpropagation learning method with interval type-2 fuzzy weights in neural networks. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013. [Google Scholar]
- Montesdeoca-Contreras, J.C.; Zambrano-Abad, J.C.; Morales-Garcia, J.A.; Ávila-Campoverde, R.S. Virtual speed sensor for dc motor using back-propagation artificial neural networks. In Proceedings of the 2014 IEEE international autumn meeting on power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 5–7 November 2014. [Google Scholar]
- Niu, G.; Son, J.D.; Widodo, A.; Widodo, A.; Yang, B.S.; Hwang, D.H.; Kang, D.S. A comparison of classifier performance for fault diagnosis of induction motor using multi-type signals. Struct. Health Monit. 2007, 6, 215–229. [Google Scholar]
- Dhir, C.S.; Lee, S.Y. Discriminant independent component analysis. IEEE Trans. Neural Netw. 2011, 22, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, L.; Thayaparan, T.; Dakovic, M. Signal decomposition by using the S-method with application to the analysis of hf radar signals in sea-clutter. IEEE Trans. Signal Process. 2006, 54, 4332–4342. [Google Scholar] [CrossRef]
- Kowalski, M.; Torresani, B. Random models for sparse signals expansion on unions of bases with application to audio signals. IEEE Trans. Signal Process. 2008, 56, 3468–3481. [Google Scholar] [CrossRef] [Green Version]
- Zão, L.; Coelho, R. On the estimation of fundamental frequency from nonstationary noisy speech signals based on the Hilbert–Huang transform. IEEE Signal Process Lett. 2018, 25, 248–252. [Google Scholar] [CrossRef]
- Strasser, S.; Sheppard, J.; Fortier, N.; Goodman, R. Factored Evolutionary Algorithms. IEEE Trans. Evol. Comput. 2017, 21, 281–293. [Google Scholar] [CrossRef]
- Hu, K.; Liu, Z.; Huang, K.; Dai, C.; Gao, S. Improved differential evolution algorithm of model-based diagnosis in traction substation fault diagnosis of high-speed railway. IET Electr. Syst. Transp. 2016, 6, 163–169. [Google Scholar] [CrossRef]
- Secmen, M.; Tasgetiren, M.F. Ensemble of differential evolution algorithms for electromagnetic target recognition problem. IET Radar Sonar Navig. 2013, 7, 780–788. [Google Scholar] [CrossRef]
- UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml (accessed on 5 September 2019).
- Ali, M.Z.; Shabbir, M.N.S.K.; Liang, X.; Zhang, Y.; Hu, T. Machine learning-based fault diagnosis for single- and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Trans. Ind. Appl. 2019, 55, 2378–2391. [Google Scholar] [CrossRef]
Type | Rated Current | Rated Torque | Rated Speed | Rated Output Power | Rated Efficiency |
---|---|---|---|---|---|
BL5K35030D | 22.07 A | 13.5 Kg-cm | 3020 RPM | 418.7 W | 81.2% |
Max | Mean | Mse | Std | Max/Mean | Max/Rms | ||
---|---|---|---|---|---|---|---|
Time domain | IMF1 | F1 | F2 | F3 | F4 | F5 | F6 |
IMF2 | F7 | F8 | F9 | F10 | F11 | F12 | |
IMF3 | F13 | F14 | F15 | F16 | F17 | F18 | |
IMF4 | F19 | F20 | F21 | F22 | F23 | F24 | |
IMF5 | F25 | F26 | F27 | F28 | F29 | F30 | |
IMF6 | F31 | F32 | F33 | F34 | F35 | F36 | |
IMF7 | F37 | F38 | F39 | F40 | F41 | F42 | |
IMF8 | F43 | F44 | F45 | F46 | F47 | F48 | |
Frequency domain | IMF1 | F49 | F50 | F51 | F52 | F53 | F54 |
IMF2 | F55 | F56 | F57 | F58 | F59 | F60 | |
IMF3 | F61 | F62 | F63 | F64 | F65 | F66 | |
IMF4 | F67 | F68 | F69 | F70 | F71 | F72 | |
IMF5 | F73 | F74 | F75 | F76 | F77 | F78 | |
IMF6 | F79 | F80 | F81 | F82 | F83 | F84 | |
IMF7 | F85 | F86 | F87 | F88 | F89 | F90 | |
IMF8 | F91 | F92 | F93 | F94 | F95 | F96 |
Dataset | Optimize | Classifier | Number of Feature | Accuracy (%) |
---|---|---|---|---|
segmentation | – | BPNN | 19 | 85.62 |
DE | BPNN | 91.77 | ||
– | LDA | 78.35 | ||
DE | LDA | 78.42 | ||
sonar | – | BPNN | 60 | 84.66 |
DE | BPNN | 87.21 | ||
– | LDA | 71.20 | ||
DE | LDA | 72.24 | ||
wine | – | BPNN | 13 | 77.96 |
DE | BPNN | 89.81 | ||
– | LDA | 98.30 | ||
DE | LDA | 98.90 | ||
vowel | – | BPNN | 10 | 44.52 |
DE | BPNN | 49.61 | ||
– | LDA | 58.10 | ||
DE | LDA | 60.60 | ||
WDBC | – | BPNN | 30 | 62.74 |
DE | BPNN | 66.98 | ||
– | LDA | 95.30 | ||
DE | LDA | 95.63 |
Signal Analysis | Feature Selection | Classifier | Number of Features | Accuracy (%) |
---|---|---|---|---|
HHT | FSDD | BPNN | 14 | 93.96 |
HHT | FSDD | LDA | 56 | 74.57 |
Signal Analysis | Feature Selection | Optimizer | Classifier | Number of Features | Accuracy (%) |
---|---|---|---|---|---|
HHT | – | – | BPNN | 96 | 95.70 |
HHT | FSDD | – | BPNN | 14 | 93.96 |
HHT | FSDD | DE | BPNN | 14 | 96.00 |
Signal Analysis | Feature Selection | Optimizer | Classifier | Number of Features | Accuracy (%) |
---|---|---|---|---|---|
HHT | – | – | BPNN | 96 | 95.70 |
HHT | FSDD | DE | BPNN | 14 | 96.00 |
DWT | – | – | Fine Gaussian SVM [48] | 112 | 74.40 |
DWT | – | – | Fine KNN [48] | 112 | 76.30 |
DWT | – | – | Bagged Trees [48] | 112 | 89.90 |
DWT | – | – | Subspace KNN [48] | 112 | 76.30 |
Signal Analysis | Feature Selection | Optimizer | Classifier | Number of Features | ∞ dB | 30 dB | 25 dB | 20 dB |
---|---|---|---|---|---|---|---|---|
HHT | – | – | BPNN | 14 | 93.96 | 92.66 | 92.13 | 90.84 |
HHT | FSDD | DE | BPNN | 96.00 | 94.28 | 92.42 | 92.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Hung, C.-H. Feature Ranking and Differential Evolution for Feature Selection in Brushless DC Motor Fault Diagnosis. Symmetry 2021, 13, 1291. https://doi.org/10.3390/sym13071291
Lee C-Y, Hung C-H. Feature Ranking and Differential Evolution for Feature Selection in Brushless DC Motor Fault Diagnosis. Symmetry. 2021; 13(7):1291. https://doi.org/10.3390/sym13071291
Chicago/Turabian StyleLee, Chun-Yao, and Chen-Hsu Hung. 2021. "Feature Ranking and Differential Evolution for Feature Selection in Brushless DC Motor Fault Diagnosis" Symmetry 13, no. 7: 1291. https://doi.org/10.3390/sym13071291
APA StyleLee, C. -Y., & Hung, C. -H. (2021). Feature Ranking and Differential Evolution for Feature Selection in Brushless DC Motor Fault Diagnosis. Symmetry, 13(7), 1291. https://doi.org/10.3390/sym13071291