Study on Low-Frequency Band Gap Characteristics of a New Helmholtz Type Phononic Crystal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Frequency Band Gap Characteristics
2.2. Structural Equivalent Model
3. Results
3.1. Structure Sound Insulation Characteristics
3.2. Study on the Influencing Factors of Band Gap
3.2.1. Influence of the Length of Wedge Base d on Band Gap
3.2.2. Influence of the Wedge Height h on Band Gap
3.2.3. Influence of the Lattice Constant a on Band Gap
4. Discussion
- First item; the symmetric structure design can break through the limit of the traditional Helmholtz cavity structure band gap, reducing to 12 Hz with a structure size of 60 mm, and ensure the band gap width of more than 10 Hz. It has engineering significance for the application in the field of low-frequency vibration reduction and sound insulation of aircraft cabins.
- Second item; in this paper, the spring-oscillator model is used to conduct equivalent analysis on the structure. The upper and lower limits of the band gap are solved by the finite element method and the transfer matrix method. The results obtained by the two solutions are basically consistent, which shows the correctness of the model hypothesis.
- Third item; the effects of structural parameters such as the length of the wedge base, the wedge height, and the lattice constant on the upper and lower limits of the first band gap are analyzed. It can be seen from the analysis that the wedge with a smaller base and higher height is beneficial to improve the sound insulation performance of the structure in the low-frequency range. Keeping a small lattice constant is one of the key factors to obtain a wide band gap.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, Z.; Yongxiang, W.; Chuandong, D. Experimental study on the influence of noise on pilot ergonomics of J-8D aircraft. China J. Aerosp. Med. 1998, 9, 172. [Google Scholar]
- Wencheng, S.; Yujun, L.; Qiang, F. Wind Tunnel Test of Active Flow Control Technology for Aerodynamic Noise of Weapon Cabin. Chin. J. Aerodyn. 2016, 34, 33–39. [Google Scholar]
- Emborg, U.; Samuelsson, F.; Holmgren, J.; Leth, S. Active and passive noise control in practice on the Saab 2000 high speed turboprop. In Proceedings of the 4th AIAA/CEAS Aeroacoustics Conference, Toulouse, France, 2–4 June 1998. [Google Scholar] [CrossRef]
- Liang, Q.; Lv, P.; He, J.; Wu, Y.; Ma, F.; Chen, T. A controllable low-frequency broadband sound absorbing metasurface. J. Phys. D Appl. Phys. 2021, 54, 355109. [Google Scholar] [CrossRef]
- Gao, N.; Tang, L.; Deng, J.; Lu, K.; Hou, H.; Chen, K. Design, fabrication and sound absorption test of composite porous matamaterial with embedding I-plates into porous polyurethane. Appl. Acoust. 2021, 175, 107845. [Google Scholar] [CrossRef]
- Deymier, P.A. Acoustic Metamaterials and Phononic Crystals; National Defense Industry Press: Beijing, China, 2016. [Google Scholar]
- Montoya, F.G.; Baños, R.; Alcayde, A.; Manzano-Agugliaro, F. Symmetry in Engineering Sciences II. Symmetry 2020, 12, 1077. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022. [Google Scholar] [CrossRef] [PubMed]
- Chenzhi, C.; Cheukming, M. Hybrid noise control in a duct using a periodic dual Helmholtz resonator array. Appl. Acoust. 2018, 134, 119–124. [Google Scholar]
- Mariaa, N.; Gabriela, S. Position optimization of Helmholtz resonator in ducts using a genetic algorithm. J. Acoust. Soc. Am. 2013, 133, 3452. [Google Scholar]
- Ahmet, S.; Iljae, L. Helmholtz resonator with extended neck. J. Acoust. Soc. Am. 2003, 113, 1975–1985. [Google Scholar]
- Dan, Z. Transmission loss analysis of a Parallel-Coupled helmholtz resonator network. AIAA J. 2012, 50, 1339–1346. [Google Scholar]
- Cai, C.; Mak, C.M.; Shi, X. An extended neck versus a spiral neck of the Helmholtz resonator. Appl. Acoust. 2017, 115, 74–80. [Google Scholar] [CrossRef]
- Fan, Y.; Lijun, L. Transmission loss and characteristic analysis of double Helmholtz resonators with different connection modes. Mod. Manuf. Eng. 2018, 452, 31–37. [Google Scholar]
- Shengli, S.; Miao, Z.; Weiwu, C. Research of acoustically improved Helmholtz resonator. Ship Sci. Technol. 2014, 36, 128–131. [Google Scholar]
- Xudong, W.; Yi, K.; Shuguang, Z.; Panxue, L. Research on multi-band structural noise reduction of vehicle body based on two-degree-of-freedom locally resonant phononic crystal. Appl. Acoust. 2021, 179, 108073. [Google Scholar]
- Li, J.; Wang, W.; Xie, Y.; Popa, B.-I.; Cummer, S.A. A sound absorbing metasurface with coupled resonators. Appl. Phys. Lett. 2016, 109, 091908. [Google Scholar] [CrossRef]
- Xia, B.; Qin, Y.; Chen, N.; Yu, D.; Jiang, C. Optimization of uncertain acoustic metamaterial with Helmholtz resonators based on interval model. Sci. China Technol. Sci. 2017, 60, 385–398. [Google Scholar] [CrossRef]
- Atak, O.; Huybrechs, D.; Pluymers, B.; Desmet, W. The design of Helmholtz resonator based acoustic lenses by using the symmetric Multi-Level Wave Based Method and genetic algorithms. J. Sound Vib. 2014, 333, 3367–3381. [Google Scholar] [CrossRef]
- Xie, Y.; Popa, B.-I.; Zigoneanu, L.; Cummer, S.A. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 2013, 110, 175501. [Google Scholar] [CrossRef]
- Shu, Z.; Leilei, Y.; Nicholas, F. Focusing Ultrasound with an Acoustic Metamaterial Network. Phys. Rev. Lett. 2009, 102, 194301. [Google Scholar]
- Gao, N.; Wu, J.; Lu, K.; Zhong, H. Hybrid composite meta-porous structure for improving and broadening sound absorption. Mech. Syst. Signal Process. 2021, 154, 107504. [Google Scholar] [CrossRef]
- Guan, D.; Wu, J.H.; Jing, L.; Gao, N.; Hou, M. Application of a Helmholtz structure for low frequency noise reduction. Noise Control Eng. J. 2015, 63, 20–35. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Hou, Z.L.; Fu, X.J. Local resonant acoustic band gaps in two-dimensional square-arranged Helmholtz resonators array. Acta Phys. Sin. 2012, 61, 000238. [Google Scholar]
- Xin, C.; Hong, Y.; Zhao, J.-B.; Zhang, S.; He, Z.-H.; Jiang, J.-N. Study on Band Gap of Helmholtz Resonator Coupled with Elastic Oscillator Structure. Acta Phys. Sin. 2019, 68, 084302. [Google Scholar]
- Xin, C.; Hong, Y.; Zhao, J.-B.; Zhang, S.; He, Z.-H.; Jiang, J.-N. Low Frequency Band Gap of Thin Films Coupled with Helmholtz Cavity. Acta Phys. Sin. 2019, 68, 214208. [Google Scholar]
- Qingying, Q.; Xiuming, C.; Chao, Y.; Peien, F. Classification and Effects of Symmetry of Mechanical Structure and Its Application in Design. Symmetry 2021, 13, 683. [Google Scholar]
- Elford, D.P.; Chalmers, L.; Kusmartsev, F.V.; Swallowe, G.M. Matryoshka locally resonant sonic crystal. J. Acoust. Soc. Am. 2011, 130, 2746–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, N.; Luo, D.; Cheng, B.; Hou, H. Teaching-learning-based optimization of a composite metastructure in the 0–10 kHz broadband sound absorption range. J. Acoust. Soc. Am. 2020, 148, EL125–EL129. [Google Scholar] [CrossRef]
- Rongjue, W. Accurate Calculation of Sound Velocity in Air. J. Nanjing Univ. Nat. Sci. Ed. 1955, 1, 55–63. [Google Scholar]
Parameters | ρair (kg/m3) | c (m/s) | s1 (m2) | V1 (m3) | V2 (m3) | l2/m |
---|---|---|---|---|---|---|
Value | 1.25 | 343 | 1.5 × 10−4 | 1.16 × 10−3 | 2.44 × 10−4 | 2.4 |
Computing Method | Lower Limit of First Band Gap | Upper Limit of First Band Gap | Lower Limit of Second Band Gap | Upper Limit of Second Band Gap |
---|---|---|---|---|
FEM | 12.0 | 26.6 | 74.1 | 82.8 |
TMM | 12.1 | 26.5 | 73.6 | 82.2 |
Error | 0.83% | 0.38% | 0.67% | 0.72% |
Parameters | d/mm | h/mm | a/mm | l1/mm | n1 | b/mm | l3/mm |
---|---|---|---|---|---|---|---|
Initial structural parameters | 0.6 | 0.8 | 62 | 60 | 20 | 1 | 57 |
Variation range of structural parameters | [0.5, 3.0] | [0.3, 0.8] | [62, 70] | 60 | 20 | 1 | 57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.-H.; Zhao, J.-B.; Zhang, G.-J.; Yao, H. Study on Low-Frequency Band Gap Characteristics of a New Helmholtz Type Phononic Crystal. Symmetry 2021, 13, 1379. https://doi.org/10.3390/sym13081379
Han D-H, Zhao J-B, Zhang G-J, Yao H. Study on Low-Frequency Band Gap Characteristics of a New Helmholtz Type Phononic Crystal. Symmetry. 2021; 13(8):1379. https://doi.org/10.3390/sym13081379
Chicago/Turabian StyleHan, Dong-Hai, Jing-Bo Zhao, Guang-Jun Zhang, and Hong Yao. 2021. "Study on Low-Frequency Band Gap Characteristics of a New Helmholtz Type Phononic Crystal" Symmetry 13, no. 8: 1379. https://doi.org/10.3390/sym13081379
APA StyleHan, D. -H., Zhao, J. -B., Zhang, G. -J., & Yao, H. (2021). Study on Low-Frequency Band Gap Characteristics of a New Helmholtz Type Phononic Crystal. Symmetry, 13(8), 1379. https://doi.org/10.3390/sym13081379