Kernel-Free Quadratic Surface Minimax Probability Machine for a Binary Classification Problem
Abstract
:1. Introduction
2. Related Work
2.1. Quadratic Surface Support Vector Machine
2.2. Minimax Probability Machine
3. Kernel-Free Quadratic Surface Minimax Probability Machine
3.1. Optimization Problem
3.2. Algorithm
Algorithm 1: Kernel-free quadratic surface minimax probability machine (QSMPM). |
Input: Training set (1), , number of maximum iterations .
Output:, , . |
3.3. Computational Complexity
4. The Interpretability
5. Numerical Experiments
5.1. Artificial Datasets
5.2. Benchmark Datasets
5.3. Statistical Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Langley, P.; Simon, H.A. Applications of machine learning and rule induction. Commun. ACM 1995, 38, 54–64. [Google Scholar] [CrossRef]
- Vapnik, V.; Sterin, A. On structural risk minimization or overall risk in a problem of pattern recognition. Autom. Remote Control 1977, 10, 1495–1503. [Google Scholar]
- Forman, G. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 2003, 3, 1289–1305. [Google Scholar]
- Ying, S.H.; Qiao, H. Lie group method: A new approach to image matching with arbitrary orientations. Int. J. Imaging Syst. Technol. 2010, 20, 245–252. [Google Scholar] [CrossRef]
- Cao, L.J.; Tay, F. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural. Netw. 2003, 14, 1506–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasu, P.N.; Sivasai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, R.; Borah, S.; Bhoi, A.K.; Ijaz, M.F.; Pramanik, M.; Jhaveri, R.H.; Chowdhary, C.L. Performance assessment of supervised classifiers for designing intrusion detection systems: A comprehensive review and recommendations for future research. Mathematics 2021, 9, 690. [Google Scholar] [CrossRef]
- Lanckriet, G.R.G.; Ghaoui, L.E.; Bhattacharyya, C.; Jordan, M.I. Minimax probability machine. Adv. Neural Inf. Process. Syst. 2001, 37, 192–200. [Google Scholar]
- Lanckriet, G.R.G.; Ghaoui, L.E.; Bhattacharyya, C.; Jordan, M.I. A robust minimax approach to classification. J. Mach. Learn. Res. 2003, 3, 555–582. [Google Scholar]
- Johnny, K.C.; Zhong, Y.; Yang, S. A comparative study of minimax probability machine-based approaches for face recognition. Pattern Recognit. Lett. 2007, 28, 1995–2002. [Google Scholar]
- Deng, Z.; Wang, S.; Chung, F.L. A minimax probabilistic approach to feature transformation for multi-class data. Appl. Soft Comput. 2013, 13, 116–127. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, Z.; Zhu, Q.; Huang, G. Dynamic minimax probability machine based approach for fault diagnosis using pairwise discriminate analysis. IEEE Trans. Control Syst. Technol. 2017, 27, 806–813. [Google Scholar] [CrossRef]
- Yang, L.; Gao, Y.; Sun, Q. A new minimax probabilistic approach and its application in recognition the purity of hybrid seeds. Comput. Model. Eng. Sci. 2015, 104, 493–506. [Google Scholar]
- Kwok, J.T.; Tsang, W.H.; Zurada, J.M. A Class of Single-Class Minimax Probability Machines for Novelty Detection. IEEE. Trans. Neural Netw. 2007, 18, 778–785. [Google Scholar] [CrossRef]
- Strohmann, T.; Grudic, G.Z. A formulation for minimax probability machine regression. Adv. Neural Inf. Process. Syst. 2003, 76, 9–776. [Google Scholar]
- Huang, k.; Yang, H.; King, I.; Lyu, M.R.; Chan, L. The minimum error minimax probability machine. J. Mach. Learn. Res. 2004, 5, 1253–1286. [Google Scholar]
- Gu, B.; Sun, X.; Sheng, V.S. Structural minimax probability machine. IEEE Trans. Neural Netw. Learn. Syst. 2017, 1, 1646–1656. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, S.; Carrasco, M.; Lopez, J. Regularized minimax probability machine. Knowl. Based Syst. 2019, 177, 127–135. [Google Scholar] [CrossRef]
- Yang, L.M.; Wen, Y.K.; Zhag, M.; Wang, X. Twin minimax probability machine for pattern classification. Neural Netw. 2020, 131, 201–214. [Google Scholar] [CrossRef]
- Cousins, S.; Shawe-Taylor, J. High-probability minimax probability machines. Mach. Learn. 2017, 106, 863–886. [Google Scholar] [CrossRef] [Green Version]
- Yoshiyama, K.; Sakurai, A. Laplacian minimax probability machine. Pattern Recognit. Lett. 2014, 37, 192–200. [Google Scholar] [CrossRef]
- He, K.X.; Zhong, M.Y.; Du, W.L. Weighted incremental minimax probability machine-based method for quality prediction in gasoline blending process. Chemometr. Intell. Lab. Syst. 2019, 196, 103909. [Google Scholar] [CrossRef]
- Ma, J.; Yang, L.M.; Wen, Y.K.; Sun, Q. Twin minimax probability extreme learning machine for pattern recognition. Knowl. Based Syst. 2020, 187, 104806. [Google Scholar] [CrossRef]
- Ma, J.; Shen, J.M. A novel twin minimax probability machine for classification and regression. Knowl. Based Syst. 2020, 196, 105703. [Google Scholar] [CrossRef]
- Deng, Z.H.; Chen, J.Y.; Zhang, T.; Cao, L.B.; Wang, S.T. Generalized hidden-mapping minimax probability machine for the training and reliability learning of several classical intelligent models. Inf. Sci. 2018, 436–437, 302–319. [Google Scholar] [CrossRef]
- Dagher, I. Quadratic kernel-free non-linear support vector machine. J. Glob. Optim. 2008, 41, 15–30. [Google Scholar] [CrossRef]
- Luo, J.; Fang, S.C.; Deng, Z.B.; Guo, X.L. Soft quadratic surface support vector machine for binary classification. Asia Pac. J. Oper. Res. 2016, 33, 1650046. [Google Scholar] [CrossRef]
- Bai, Y.Q.; Han, X.; Chen, T.; Yu, H. Quadratic kernel-free least squares support vector machine for target diseases classification. J. Comb. Optim. 2015, 30, 850–870. [Google Scholar] [CrossRef]
- Gao, Q.Q.; Bai, Y.R.; Zhan, Y.R. Quadratic kernel-free least square twin support vector machine for binary classification problems. J. Oper. Res. Soc. China. 2019, 7, 539–559. [Google Scholar] [CrossRef]
- Mousavi, A.; Gao, Z.M.; Han, L.S.; Lim, A. Quadratic surface support vector machine with L1 norm regularization. J. Ind. Manag. Optim. 2019. [Google Scholar] [CrossRef]
- Gao, Z.M.; Fang, S.C.; Luo, J.; Medhin, N. A kernel-free double well potential support vector machine with applications. Eur. J. Oper. Re. 2020, 290, 248–262. [Google Scholar] [CrossRef]
- Luo, J.; Fang, S.C.; Bai, Y.Q.; Deng, Z.B. Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. J. Ind. Mangn. Optim. 2015, 12, 357–373. [Google Scholar] [CrossRef]
- Yan, X.; Bai, Y.Q.; Fang, S.C.; Luo, J. A kernel-free quadratic surface support vector machine for semi-supervised learning. J. Oper. Res. Soc. 2016, 67, 1001–1011. [Google Scholar] [CrossRef]
- Tian, Y.; Yong, Z.Y.; Luo, J. A new approach for reject inference in credit scoring using kernel-free fuzzy quadratic surface support vector machines. Appl. Soft Comput. 2018, 73, 96–105. [Google Scholar] [CrossRef]
- Zhai, Q.R.; Tian, Y.; Zhou, J.Y. Linear twin quadratic surface support vector regression. Math. Probl. Eng. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Luo, J.; Tian, Y.; Yan, X. Clustering via fuzzy one-class quadratic surface support vector machine. Soft Comput. 2017, 21, 5859–5865. [Google Scholar] [CrossRef]
Datasets | Samples | Attributes | Class |
---|---|---|---|
Iirs | 150 | 4 | 3 |
Hepatitis | 155 | 19 | 2 |
Wine | 178 | 13 | 3 |
Heart | 270 | 13 | 2 |
Heart-c | 303 | 14 | 2 |
Haberman | 306 | 3 | 2 |
Bupa | 345 | 6 | 2 |
Pima | 768 | 8 | 2 |
QSAR | 1055 | 41 | 2 |
Winequality-red | 1599 | 11 | 6 |
Wireless | 2000 | 7 | 4 |
Image | 2310 | 19 | 7 |
Abalone | 2649 | 8 | 2 |
Turkiye | 5820 | 32 | 13 |
Methods | Iris | Hepatitis | Wine | Heart | Heart-c | Haberman | Bupa |
---|---|---|---|---|---|---|---|
H−SVM−L | 0.6413 ± 0.0245 | 0.5835 ± 0.0185 | 0.9573 ± 0.0054 | 0.6174 ± 0.0287 | 1.0000 ± 0.0000 | 0.5189 ± 0.0024 | 0.5573 ± 0.0021 |
(4.1293) | (2.1965) | (1.8439) | (7.70490) | (3.9203) | (15.1649) | (11.2976) | |
H−SVM−P | 0.9447 ± 0.0055 | 0.5150 ± 0.0399 | 0.7571 ± 0.0365 | 0.6985 ± 0.0126 | 0.8678 ± 0.0386 | 0.7351 ± 0.0005 | 0.5798 ± 0.0003 |
(1.4087) | (1.5304) | (2.6005) | (3.8797) | (4.5568) | (10.0121) | (13.3459) | |
H−SVM−R | 0.9467 ± 0.0000 | 0.5858 ± 0.0280 | 0.9341 ± 0.0116 | 0.7144 ± 0.0183 | 1.0000 ± 0.0000 | 0.7362 ± 0.0022 | 0.5930 ± 0.0192 |
(0.8250) | (0.8734) | (1.0813) | (2.8344) | (2.4438) | (4.0609) | (3.7438) | |
S−SVM−L | 0.8693 ± 0.0155 | 0.6037 ± 0.0206 | 0.9582 ± 0.0147 | 0.8259 ± 0.0129 | 0.9888 ± 0.0156 | 0.7241 ± 0.0073 | 0.6812 ± 0.0096 |
(1.4594) | (1.3416) | (2.6656) | (9.2391) | (8.2672) | (7.8422) | (1 0.7031) | |
S−SVM−P | 0.9653 ± 0.0053 | 0.6037 ± 0.0234 | 0.7274 ± 0.0235 | 0.8296 ± 0.0097 | 0.8605 ± 0.0087 | 0.7228 ± 0.0103 | 0.6788 ± 0.0095 |
(1.4149) | (1.4703) | (1.9407) | (9.0609) | (11.3328) | (11.1953) | (12.3328) | |
S−SVM−R | 0.9547 ± 0.0061 | 0.5588 ± 0.0183 | 0.8921 ± 0.0131 | 0.7989 ± 0.0058 | 0.7642 ± 0.0101 | 0.7261 ± 0.0080 | 0.6826 ± 0.0088 |
(0.9406) | (0.8656) | (1.1641) | (2.1344) | (2.6000) | (2.7719) | (3.2813) | |
MPM−L | 0.8280 ± 0.0082 | 0.6010 ± 0.0114 | 0.9731 ± 0.0052 | 0.8133 ± 0.0080 | 1.0000 ± 0.0000 | 0.7177 ± 0.0093 | 0.6220 ± 0.0079 |
(0.3073) | (0.0244) | (1.7831) | (3.1887) | (1.7379) | (3.4944) | (0.1201) | |
MPM−P | 0.9747 ± 0.0028 | 0.5954 ± 0.0302 | 0.9759 ± 0.0046 | 0.8026 ± 0.0133 | 0.9681 ± 0.0066 | 0.7159 ± 0.0075 | 0.6891 ± 0.0114 |
(1.9079) | (1.7051) | (2.9640) | (5.6504) | (6.6425) | (5.9514) | (5.5131) | |
MPM−R | 0.9620 ± 0.0063 | 0.5382 ± 0.0412 | 0.7860 ± 0.0121 | 0.6578 ± 0.0105 | 0.6981 ± 0.0101 | 0.6879 ± 0.0114 | 0.7212 ± 0.0088 |
(4.5256) | (9.0683) | (4.3758) | (10.5238) | (5.6452) | (11.9107) | (8.5723) | |
QSSVM | 0.9533 ± 0.0070 | 0.5626 ± 0.0342 | 0.9608 ± 0.0052 | 0.6989 ± 0.0182 | 0.9980 ± 0.0023 | 0.7416 ± 0.0073 | 0.7203 ± 0.0047 |
(1.2371) | (3.7612) | (2.1109) | (3.5241) | (4.2947) | (5.6426) | (8.0918) | |
SQSSVM | 0.9527 ± 0.0049 | 0.5650 ± 0.0117 | 0.9622 ± 0.0071 | 0.7970 ± 0.0098 | 0.9954 ± 0.0024 | 0.7296 ± 0.0050 | 0.7220 ± 0.0074 |
(0.9266) | (4.6098) | (2.6832) | (5.2822) | (7.2993) | (5.0482) | (7.0653) | |
QSMPM | 0.9767 ± 0.0035 | 0.6069 ± 0.0313 | 0.9759 ± 0.0053 | 0.8293 ± 0.0114 | 1.0000 ± 0.0000 | 0.7205 ± 0.0069 | 0.7164 ± 0.0093 |
(0.3089) | (2.0608) | (1.3884) | (0.8580) | (2.5179) | (0.2902) | (0.2870) |
Methods | Pima | QSAR | Winequality-Red | Wireless | Image | Abalone | Turkiye |
---|---|---|---|---|---|---|---|
H−SVM−L | 0.6799 ± 0.0035 | 0.3675 ± 0.0014 | 0.6156 ± 0.0014 | 0.7280 ± 0.0094 | 0.6470 ± 0.0011 | 0.7357 ± 0.0040 | 0.5051 ± 0.0005 |
(128.9255) | (223.9172) | (813.7250) | (3956.2000) | (947.0836) | (2825.5000) | (3013.1000) | |
H−SVM−P | 0.5710 ± 0.0155 | 0.8133 ± 0.0081 | 0.4653 ± 0.0000 | 0.8463 ± 0.0234 | 0.6979 ± 0.0020 | 0.4934 ± 0.0000 | 0.5033 ± 0.0038 |
(75.1160) | (451.2469) | (475.2321) | (4449.2000) | (996.2086) | (1429.9000) | (23897.0000) | |
H−SVM−R | 0.6919 ± 0.0117 | 0.8171 ± 0.0069 | 0.7628 ± 0.0058 | 0.9877 ± 0.0010 | 0.9698 ± 0.0019 | 0.8067 ± 0.0062 | − |
(14.9234) | (110.5313) | (3707.5000) | (404.7438) | (567.4688) | (693.4125) | − | |
S−SVM−L | 0.7669 ± 0.0076 | 0.8340 ± 0.0152 | 0.7291 ± 0.0023 | 0.9139 ± 0.0044) | 0.7531 ± 0.0304 | 0.8108 ± 0.0009 | − |
(82.0609) | (211.0188) | (640.9000) | (1793.9000) | (2595.7000) | (1189.7000) | − | |
S−SVM−P | 0.7585 ± 0.0066 | 0.8677 ± 0.0058 | 0.7492 ± 0.0021 | 0.9799 ± 0.0017 | 0.9602 ± 0.0015 | 0.8298 ± 0.0018 | − |
(27.8571) | (259.1922) | (1123.8000) | (3120.7000) | (4820.8000) | (3120.7000) | − | |
S−SVM−R | 0.6941 ± 0.0078 | 0.8503 ± 0.0031 | 0.7352 ± 0.0024 | 0.9853 ± 0.0054 | 0.9715 ± 0.0020 | 0.8242 ± 0.0008 | − |
(16.5313) | (103.9438) | (294.0688) | (717.2984) | (506.2984) | (984.2250) | − | |
MPM−L | 0.7405 ± 0.0048 | 0.8296 ± 0.0039 | 0.7409 ± 0.0025 | 0.9108 ± 0.0008 | 0.8555 ± 0.0012 | 0.8144 ± 0.0009 | 0.5779 ± 0.0026 |
(0.1014) | (0.8377) | (0.2683) | (0.1560) | (0.2969) | (0.1266) | (0.3167) | |
MPM−P | 0.7442 ± 0.0035 | 0.8225 ± 0.0061 | 0.7326 ± 0.0020 | 0.9361 ± 0.0013 | 0.8499 ± 0.0011 | 0.8109 ± 0.0009 | 0.5780 ± 0.0014 |
(32.9178) | (68.1350) | (122.7891) | (187.2266) | (257.7266) | (413.9861) | (2669.2000) | |
MPM−R | 0.7356 ± 0.0054 | 0.8373 ± 0.0037 | 0.7234 ± 0.0020 | 0.9850 ± 0.0006 | 0.9413 ± 0.0018 | 0.8264 ± 0.0014 | 0.5689 ± 0.0016 |
(37.2874) | (83.8022) | (139.5734) | (248.8594) | (402.6281) | (423.6125) | (2386.7000) | |
QSSVM | 0.7663 ± 0.0049 | − | 0.4722 ± 0.0032 | 0.6315 ± 0.0078 | 0.5714 ± 0.0000 | 0.5125 ± 0.0012 | − |
(70.7730) | − | (27.7094) | (14.7250) | (59.1266) | (29.5344) | − | |
SQSSVM | 0.7589 ± 0.0036 | − | 0.7452 ± 0.0036 | 0.9782 ± 0.0012 | 0.5714 ± 0.0000 | 0.8280 ± 0.0015 | − |
(43.0610) | − | (36.8234) | (45.3036) | (63.7109) | (50.1641) | − | |
QSMPM | 0.7530 ± 0.0049 | 0.8482 ± 0.0047 | 0.7470 ± 0.0027 | 0.9427 ± 0.0012 | 0.8731 ± 0.0013 | 0.8299 ± 0.0011 | 0.5852 ± 0.0018 |
(0.5585) | (16.6328) | (1.3525) | (1.0608) | (3.6953) | (1.1984) | (14.6360) |
Datasets | H−SVM−L | H−SVM−P | H−SVM−R | S−SVM−L | S−SVM−P | S−SVM−R | MPM−L | MPM−P | MPM−R | QSSVM | SQSSVM | QSMPM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Iirs | 12 | 9 | 8 | 10 | 3 | 5 | 11 | 2 | 4 | 6 | 7 | 1 |
Hepatitis | 7 | 12 | 6 | 2.5 | 2.5 | 10 | 4 | 5 | 11 | 9 | 8 | 1 |
Wine | 7 | 11 | 8 | 6 | 12 | 9 | 3 | 1.5 | 10 | 5 | 4 | 1.5 |
Heart | 12 | 10 | 8 | 3 | 1 | 6 | 4 | 5 | 11 | 9 | 7 | 2 |
Heart-c | 2.5 | 9 | 2.5 | 7 | 10 | 11 | 2.5 | 8 | 12 | 5 | 6 | 2.5 |
Haberman | 12 | 3 | 2 | 6 | 7 | 5 | 9 | 10 | 11 | 1 | 4 | 8 |
Bupa Liver | 12 | 11 | 10 | 7 | 8 | 6 | 9 | 5 | 2 | 3 | 1 | 4 |
Pima | 11 | 12 | 10 | 1 | 4 | 9 | 7 | 6 | 8 | 2 | 3 | 5 |
QSAR | 10 | 9 | 8 | 5 | 1 | 2 | 6 | 7 | 4 | 11.5 | 11.5 | 3 |
Winequality-red | 10 | 12 | 1 | 8 | 2 | 6 | 5 | 7 | 9 | 11 | 4 | 3 |
Wireless | 11 | 10 | 1 | 8 | 4 | 2 | 9 | 7 | 3 | 12 | 5 | 6 |
Image Segmentation | 10 | 9 | 2 | 8 | 3 | 1 | 6 | 7 | 4 | 11.5 | 11.5 | 5 |
Abalone | 10 | 12 | 9 | 8 | 2 | 5 | 6 | 7 | 4 | 11 | 3 | 1 |
Turkiye | 5 | 6 | 9.5 | 9.5 | 9.5 | 9.5 | 3 | 2 | 4 | 9.5 | 9.5 | 1 |
Average ranks | 9.3929 | 9.6429 | 6.0714 | 6.3571 | 4.9286 | 6.1786 | 6.0357 | 5.6786 | 6.9286 | 7.6071 | 6.0357 | 3.1429 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, Z.; Yang, X. Kernel-Free Quadratic Surface Minimax Probability Machine for a Binary Classification Problem. Symmetry 2021, 13, 1378. https://doi.org/10.3390/sym13081378
Wang Y, Yang Z, Yang X. Kernel-Free Quadratic Surface Minimax Probability Machine for a Binary Classification Problem. Symmetry. 2021; 13(8):1378. https://doi.org/10.3390/sym13081378
Chicago/Turabian StyleWang, Yulan, Zhixia Yang, and Xiaomei Yang. 2021. "Kernel-Free Quadratic Surface Minimax Probability Machine for a Binary Classification Problem" Symmetry 13, no. 8: 1378. https://doi.org/10.3390/sym13081378
APA StyleWang, Y., Yang, Z., & Yang, X. (2021). Kernel-Free Quadratic Surface Minimax Probability Machine for a Binary Classification Problem. Symmetry, 13(8), 1378. https://doi.org/10.3390/sym13081378