Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for ( ,m)-Convex Functions
Abstract
:1. Introduction
2. Hermite–Hadamard Type Inequalities for -Convex Functions
3. Refinements of Hermite–Hadamard Type Inequalities
4. Applications to Special Functions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard-Fejr type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite–Hadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite–Hadamard-type inequalities involving-Riemann-Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef] [Green Version]
- Aljaaidi, T.A.; Pachpatte, D.B. The Minkowski’s inequalities via f-Riemann-Liouville fractional integral operators. Rendiconti del Circolo Matematico di Palermo Series 2 2021, 70, 893–906. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Jarad, F.; Chu, Y.M. Existence and uniqueness of uncertain fractional backward difference equations of Riemann-Liouville type. Math. Probl. Eng. 2020, 2020, 6598682. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Guessab, A.; Schmeisser, G. Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 2002, 115, 260–288. [Google Scholar] [CrossRef] [Green Version]
- Guessab, A.; Schmeisser, G. Sharp error estimates for interpolatory approximation on convex polytopes. SIAM J. Numer. Anal. 2005, 43, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Guessab, A.; Schmeisser, G. Convexity results and sharp error estimates in approximate multivariate integration. Math. Comput. 2004, 73 1, 1365–1384. [Google Scholar] [CrossRef]
- Guessab, A. Approximations of differentiable convex functions on arbitrary convex polytopes. Appl. Math. Comput. 2014, 240, 326–338. [Google Scholar] [CrossRef]
- Tariq, M.; Nasir, J.N.; Sahoo, S.K.; Mallah, A.A. A note on some Ostrowski type inequalities via generalized exponentially convexity. J. Math. Anal. Model. 2021, 2, 1–5. [Google Scholar]
- Tariq, M.; Sahoo, S.K.; Nasir, J.; Awan, S.K. Some Ostrowski type integral inequalities using hypergeometric functions. J. Fract. Calc. Nonlinear Syst. 2021, 2, 24–41. [Google Scholar] [CrossRef]
- Tariq, M. New Hermite–Hadamard Type Inequalities via p-harmonic exponential type convexity and applications. Univ. J. Math. Appl. 2021, 4, 59–69. [Google Scholar]
- Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofel, T.A. Hermite–Hadamard type inequalities via generalized harmonic exponential convexity. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar]
- Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. Hermite–Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications. Adv. Differ. Equ. 2020, 2020, 508. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Nasir, J.; Aydi, H.; Mukheimer, A. New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications. Symmetry 2021, 13, 1429. [Google Scholar] [CrossRef]
- Özcan, S.; İşcan, İ. Some new Hermite–Hadamard type integral inequalities for the s–convex functions and theirs applications. J. Inequal. Appl. 2019, 2019, 201. [Google Scholar] [CrossRef] [Green Version]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. n-polynomial exponential-type p-convex function with some related inequalities and their applications. Heliyon 2020, 6, e05420. [Google Scholar] [CrossRef] [PubMed]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Aydi, H.; Jleli, M.; Samet, B. On positive solutions for a fractional thermostat model with a convex–concave source term via ψ-Caputo fractional derivative. Mediterr. J. Math. 2020, 17, 16. [Google Scholar] [CrossRef]
- Marasi, H.R.; Aydi, H. Existence and uniqueness results for two-term nonlinear fractional differential equations via a fixed point technique. J. Math. 2021, 2021, 6670176. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Avcı, M.; Set, E. On some inequalities of Hermite–Hadamard type via m-convexity. Appl. Math. Lett. 2010, 23, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.M.; Farid, G.; Nazeer, W.; Mehmood, S. (h,m)-convex functions and associated fractional Hadamard and Fejér–Hadamard inequalities via an extended generalized Mittag-Leffler function. J. Inequal. Appl. 2019, 2019, 78. [Google Scholar] [CrossRef]
- Lv, Y.P.; Farid, G.; Yasmeen, H.; Nazeer, W.; Jung, C.Y. Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h,m)-convex functions. AIMS Math. 2021, 6, 8978–8999. [Google Scholar] [CrossRef]
- Mishra, L.N.; Ain, Q.U.; Farid, G.; Rehman, A.U. k-fractional integral inequalities for (h,m)-convex functions via Caputo k-fractional derivatives. Korean J. Math. 2019, 27, 357–374. [Google Scholar]
- Alzer, H. A superadditive property of Hadamard’s gamma function. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg; Springer: Berlin/Heidelberg, Germany, 2009; Volume 79, pp. 11–23. [Google Scholar]
- Toader, G. Some generalization of the convexity. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 25–27 October 1984; pp. 329–338. [Google Scholar]
- Ozdemir, M.E.; Akdemri, A.O.; Set, E. On (h-m)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 2016, 8, 51–58. [Google Scholar]
- Kermausuor, S.; Nwaeze, E.R. New integral inequalities of Hermite–Hadamard type via the Katugampola fractional integrals for strongly η-quasiconvex functions. J. Anal. 2021, 29, 633–647. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Ertugral, F. On the generalized Hermite–Hadamard inequalities. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L. Certain fractional integral inequalities using generalized Katugampola fractional integral operator. Malaya J. Math. 2020, 8, 809–814. [Google Scholar]
- Wu, S.; Iqbal, S.; Aamir, M.; Samraiz, M.; Younus, A. On some Hermite–Hadamard inequalities involving k-fractional operators. J. Inequal. Appl. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Fečkan, M.; Zhou, Y. Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2013, 92, 2241–2253. [Google Scholar] [CrossRef]
- Jolevska-Tuneska, B.; Jolevski, I. Some results on the digamma function. Appl. Math. Inform. Sci. 2013, 7, 167–170. [Google Scholar] [CrossRef]
- Salem, A.; Kilicman, A. Estimating the polygamma functions for negative integers. J. Inequal. Appl. 2013, 2013, 523. [Google Scholar] [CrossRef] [Green Version]
- Salem, A. The neutrix limit of the q-Gamma function and its derivatives. Appl. Math. Lett. 2010, 23, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Salem, A. Existence of the neutrix limit of the q-analogue of the incomplete gamma function and its derivatives. Appl. Math. Lett. 2012, 25, 363–368. [Google Scholar] [CrossRef]
- Krattenthaler, C.; Srivastava, H.M. Summations for basic hypergeometric series involving a q-analogue of the digamma function. Comput. Math. Appl. 1996, 32, 73–91. [Google Scholar] [CrossRef] [Green Version]
- Salem, A. Some properties and expansions associated with q-digamma function. Quaest. Math. 2013, 36, 67–77. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M.
Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (
Sahoo SK, Ahmad H, Tariq M, Kodamasingh B, Aydi H, De la Sen M.
Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (
Sahoo, Soubhagya Kumar, Hijaz Ahmad, Muhammad Tariq, Bibhakar Kodamasingh, Hassen Aydi, and Manuel De la Sen.
2021. "Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (
Sahoo, S. K., Ahmad, H., Tariq, M., Kodamasingh, B., Aydi, H., & De la Sen, M.
(2021). Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (