Next Article in Journal
Substructure Shake Table Testing of Frame Structure–Damper System Using Model-Based Integration Algorithms and Finite Element Method: Numerical Study
Next Article in Special Issue
Stability Analysis of a Diffusive Three-Species Ecological System with Time Delays
Previous Article in Journal
Integrability and Limit Cycles via First Integrals
Previous Article in Special Issue
Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (h¯,m)-Convex Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Variety of Dynamic Steffensen-Type Inequalities on a General Time Scale

by
Ahmed Abdel-Moneim El-Deeb
1,*,
Omar Bazighifan
2,3 and
Jan Awrejcewicz
4,*
1
Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
2
Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Rome, Italy
3
Department of Mathematics, Faculty of Science, Hadhramout University, Mukalla 50512, Yemen
4
Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland
*
Authors to whom correspondence should be addressed.
Symmetry 2021, 13(9), 1738; https://doi.org/10.3390/sym13091738
Submission received: 24 August 2021 / Revised: 7 September 2021 / Accepted: 15 September 2021 / Published: 18 September 2021

Abstract

:
This work is motivated by the work of Josip Pečarić in 2013 and 1982 and the work of Srivastava in 2017. By the utilization of the diamond- α dynamic inequalities, which are defined as a linear mixture of the delta and nabla integrals, we present and prove very important generalized results of diamond- α Steffensen-type inequalities on a general time scale. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.

1. Introduction

In 1982, Pečarić [1] speculated on the Steffensen inequality, presenting the following two hypotheses.
Theorem 1.
Let f ^ , g ^ , h ^ : [ r 1 , r 2 ] be integrable functions on [ r 1 , r 2 ] such that f ^ / h ^ is nonincreasing and h ^ is non-negative. Further, let 0 g ^ ( ı ) 1 ı [ r 1 , r 2 ] . Then,
r 1 r 2 f ^ ( ı ) g ^ ( ı ) d ı r 1 r 1 + ^ f ^ ( ı ) d ı ,
where ^ is the solution of the equation
r 1 r 1 + ^ h ^ ( ı ) d ı = r 1 r 2 h ^ ( ı ) g ^ ( ı ) d ı .
We obtain the reverse of (1) if f ( ı ) ^ / h ( ı ) ^ is nondecreasing.
Theorem 2.
Let f ^ , g ^ , h ^ : [ r 1 , r 2 ] R be integrable functions on [ r 1 , r 2 ] such that f ^ / h ^ is nonincreasing and h ^ is non-negative. Further, let 0 g ^ ( ı ) 1   ı [ r 1 , r 2 ] . Then,
r 2 ^ r 2 f ^ ( ı ) d ı r 1 r 2 f ^ ( ı ) g ^ ( ı ) d ı
where ^ gives us the solution of
r 2 ^ r 2 h ^ ( ı ) d ı = r 1 r 2 h ^ ( ı ) g ^ ( ı ) d ı .
We obtain the reverse of (2) if f ( ı ) ^ / h ( ı ) ^ is nondecreasing.
Wu and Srivastava in [2] acquired the accompanying result.
Theorem 3.
Let f ^ , g ^ , h ^ : [ r 1 , r 2 ] R be integrable functions on [ r 1 , r 2 ] such that f ^ is nonincreasing. Further, let 0 g ^ ( ı ) h ^ ( ı )   ı [ r 1 , r 2 ] . Then,
r 2 ^ r 2 f ^ ( ı ) h ^ ( ı ) d ı r 2 ^ r 2 f ^ ( ı ) h ^ ( ı ) f ^ ( ı ) f ^ ( r 2 ^ ) h ^ ( ı ) g ^ ( ı ) d ı r 1 r 2 f ^ ( ı ) g ^ ( ı ) d ı r 1 r 1 + ^ f ^ ( ı ) h ^ ( ı ) f ^ ( ı ) f ^ ( r 1 + ^ ) h ^ ( ı ) g ^ ( ı ) d ı r 1 r 1 + ^ f ^ ( ı ) h ^ ( ı ) d ı ,
where ^ is given by
r 1 r 1 + ^ h ^ ( ı ) d ı = r 1 r 2 g ^ ( ı ) d ı = r 2 ^ r 2 h ^ ( ı ) d ı .
The following interesting findings were published in [3].
Theorem 4.
Suppose the integrability of g ^ , h ^ , f ^ , ψ : [ r 1 , r 2 ] R such that f ^ is nonincreasing. Additionally, suppose that 0 ψ ^ ( ı ) g ^ ( ı ) h ^ ( ı ) ψ ^ ( ı ) for all ı [ r 1 , r 2 ] . Then,
r 1 r 2 f ^ ( ı ) g ^ ( ı ) d ı r 1 r 1 + ^ f ^ ( ı ) h ^ ( ı ) d ı r 1 r 2 | f ^ ( ı ) f ^ ( r 1 + ^ ) ψ ( ı ) | d ı ,
where ^ is given by
r 1 r 1 + ^ h ^ ( ı ) d ı = r 1 r 2 g ^ ( ı ) d ı .
Theorem 5.
Under the hypotheses of Theorem 4,
r 2 ^ r 2 f ^ ( ı ) h ^ ( ı ) d ı + r 1 r 2 | f ^ ( ı ) f ^ ( r 2 ^ ) ψ ^ ( ı ) | d ı r 1 r 2 f ^ ( ı ) g ^ ( ı ) d ı ,
where ^ is given by
r 2 ^ r 2 h ^ ( ı ) d ı = r 1 r 2 g ^ ( ı ) d ı .
The calculus of time scales with the intention to unify discrete and continuous analysis (see [4]) was proposed by Hilger [5]. For additional subtleties on time scales, we refer the reader to the book by Bohner and Peterson [6]. Additionally, understanding of diamond- α calculus on time scales is assumed, and we refer the interested reader to [7] for further details.
Recently, a massive range of dynamic inequalities on time scales have been investigated by using exclusive authors who have been inspired with the aid of a few applications (see [8,9,10,11,12,13,14]). Some authors found different results regarding fractional calculus on time scales to provide associated dynamic inequalities (see [15,16,17,18]).
We devote the remaining part of this section to the diamond- α calculus on time scales, and we refer the interested reader to [7] for further details.
If T is a time scale, and ζ is a function that is delta and nabla differentiable on T , then, for any ı T , the diamond- α dynamic derivative of ζ at ı, denoted by ζ α ( ı ) , is defined by
ζ α ( ı ) = α ζ Δ ( ı ) + ( 1 α ) ζ ( ı ) , 0 α 1 .
We conclude from the last relation that a function ζ is diamond- α differentiable if and only if it is both delta and nabla differentiable. For α = 1 , the diamond- α derivative boils down to a delta derivative, and for α = 0 it boils down to a nabla derivative.
Assume ζ , g : T R are diamond- α differentiable functions at ı T , and let k R . Then,
(i)
( ζ + Ξ ) α ( ı ) = ζ α ( ı ) + Ξ α ( ı ) ;
( i i )
( k ζ ) α ( ı ) = k ζ α ( ı ) ;
( i i i )
( ζ Ξ ) α ( ı ) = ζ α ( ı ) Ξ ( ı ) + α ζ σ ( ı ) Ξ Δ ( ı ) + ( 1 α ) ζ ρ ( ı ) Ξ ( ı ) .
Let ζ : T R be a continuous function. Then, the definite diamond- α integral of ζ is defined by
a b ζ ( ı ) α ı = α a b ζ ( ı ) Δ ı + ( 1 α ) a b ζ ( ı ) ı , 0 α 1 , a , b T .
Let a, b, c T , k R . Then,
(i)
a b ζ ( ı ) + Ξ ( ı ) α ı = a b ζ ( ı ) α ı + a b Ξ ( ı ) α ı ;
( i i )
a b k ζ ( ı ) α ı = k a b ζ ( ı ) α ı ;
( i i i )
a b ζ ( ı ) α ı = a c ζ ( ı ) α ı + c b ζ ( ı ) α ı ;
( i v )
a b ζ ( ı ) α ı = b a ζ ( ı ) α ı ;
(v)
a a ζ ( ı ) α ı = 0 ;
( v i )
if ζ ( ı ) 0 on [ a , b ] T , then a b ζ ( ı ) α ı 0 ;
( v i i )
if ζ ( ı ) Ξ ( ı ) on [ a , b ] T , then a b ζ ( ı ) α ı a b Ξ ( ı ) α ı ;
( v i i i )
| a b ζ ( ı ) α ı | a b | ζ ( ı ) | α ı .
Let ζ be a diamond α differentiable function on [ a , b ] T . Then, ζ is increasing if ζ α ( ı ) > 0 , nondecreasing if ζ α ( ı ) 0 , decreasing if ζ α ( ı ) < 0 , and nonincreasing if ζ α ( ı ) 0 on [ a , b ] T .
In this article, we explore new generalizations of the integral Steffensen inequality given in [1,2,3] via diamond α integral on general time scale measure space. We also retrieve some of the integral inequalities known in the literature as special cases of our tests.

2. Main Results

Next, we use the accompanying suppositions for the verifications of our primary outcomes:
( S 1 )
( [ r 1 , r 2 ] T , B ( [ r 1 , r 2 ] T ) , μ ^ ) is time scale measure space with a positive σ -finite measure on B ( [ r 1 , r 2 ] T ) .
( S 2 )
ζ , Υ , Ξ : [ r 1 , r 2 ] T R is α ı -integrable functions on [ r 1 , r 2 ] T .
( S 3 )
ζ / Ξ is nonincreasing and Ξ is non-negative.
( S 4 )
0 Υ ( ı ) 1 for all ı [ r 1 , r 2 ] T .
( S 5 )
^ is a real number.
( S 6 )
ζ is nonincreasing.
( S 7 )
1 Υ ( ı ) Ξ ( ı ) for all ı [ r 1 , r 2 ] T .
( S 8 )
0 ψ ( ı ) Υ ( ı ) Ξ ( ı ) ψ ( ı ) for all ı [ r 1 , r 2 ] T .
( S 9 )
0 M Υ ( ı ) 1 M for all ı [ r 1 , r 2 ] T .
( S 10 )
0 ψ ( ı ) Υ ( ı ) 1 ψ ( ı ) for all ı [ r 1 , r 2 ] T .
^ is the solution of the equations listed below:
( S 11 )
[ r 1 , r 1 + ^ ] T Ξ ( ı ) α ı = [ r 1 , r 2 ] T Ξ ( ı ) Υ ( ı ) α ı .
( S 12 )
[ r 2 ^ , r 2 ] T Ξ ( ı ) α ı = [ r 1 , r 2 ] T Ξ ( ı ) Υ ( ı ) α ı .
( S 13 )
[ r 1 , r 1 + ^ ] T Ξ ( ı ) α ı = [ r 1 , r 2 ] T Υ ( ı ) α ı = [ r 2 ^ , r 2 ] T Ξ ( ı ) α ı .
( S 14 )
[ r 1 , r 1 + ^ ] T Ξ ( ı ) α ı = [ r 1 , r 2 ] T Υ ( ı ) α ı .
( S 15 )
[ r 2 ^ , r 2 ] T Ξ ( ı ) α ı = [ r 1 , r 2 ] T Υ ( ı ) α ı .
Presently, we are prepared to state and explain the principle results that have had more effect effect from the literature.
Theorem 6.
Let S 1 , S 2 , S 3 , S 4 and S 11 be satisfied. Then,
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T ζ ( ı ) α ı .
We obtain the reverse of (5) if ζ / Ξ is nondecreasing.
Proof. 
[ r 1 , r 1 + ^ ] T ζ ( ı ) α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = [ r 1 , r 1 + ^ ] T Ξ ( ı ) [ 1 Υ ( ı ) ] ζ ( ı ) Ξ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı ζ ( r 1 + ^ ) Ξ ( r 1 + ^ ) [ r 1 , r 1 + ^ ] T Ξ ( ı ) [ 1 Υ ( ı ) ] α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 1 + ^ ) Ξ ( r 1 + ^ ) [ r 1 , r 1 + ^ ] T Ξ ( ı ) α ı [ r 1 , r 1 + ^ ] T Ξ ( ı ) Υ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 1 + ^ ) Ξ ( r 1 + ^ ) [ r 1 , r 2 ] T Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T Ξ ( ı ) Υ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 1 + ^ ) Ξ ( r 1 + ^ ) [ r 1 + ^ , r 2 ] T Ξ ( ı ) Υ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = [ r 1 + ^ , r 2 ] T Ξ ( ı ) Υ ( ı ) ζ ( r 1 + ^ ) Ξ ( r 1 + ^ ) ζ ( ı ) Ξ ( ı ) α ı 0 .
The proof is complete. □
Corollary 1.
Delta version obtained from Theorem 6 by taking α = 1
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Δ ı .
Corollary 2.
Nabla version obtained from Theorem 6 by taking α = 0
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı [ r 1 , r 1 + ^ ] T ζ ( ı ) ı .
Remark 1.
In case of T = R in Corollary 1, we recollect [1] (Theorem 1).
Theorem 7.
Assumptions S 1 , S 2 , S 3 , S 4 and S 12 imply
[ r 2 ^ , r 2 ] T ζ ( ı ) α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı
We obtain the reverse of (6) if ζ / Ξ is nondecreasing.
Proof. 
[ r 2 ^ , r 2 ] T ζ ( ı ) α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = [ r 2 ^ , r 2 ] T Ξ ( ı ) [ 1 Υ ( ı ) ] ζ ( ı ) Ξ ( ı ) α ı [ r 1 , r 2 ^ ] T ζ ( ı ) Υ ( ı ) α ı ζ ( r 2 ^ ) Ξ ( r 2 ^ ) [ r 2 ^ , r 2 ] T Ξ ( ı ) [ 1 Υ ( ı ) ] α ı [ r 1 , r 2 ^ ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 2 ^ ) Ξ ( r 2 ^ ) [ r 2 ^ , r 2 ] T Ξ ( ı ) α ı [ r 2 ^ , r 2 ] T Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ^ ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 2 ^ ) Ξ ( r 2 ^ ) [ r 1 , r 2 ] T Ξ ( ı ) Υ ( ı ) α ı [ r 2 ^ , r 2 ] T Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ^ ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 2 ^ ) Ξ ( r 2 ^ ) [ r 1 , r 2 ^ ] T Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ^ ] T ζ ( ı ) Υ ( ı ) α ı = [ r 1 , r 2 ^ ] T Ξ ( ı ) Υ ( ı ) ζ ( r 2 ^ ) Ξ ( r 2 ^ ) ζ ( ı ) Ξ ( ı ) α ı 0 .
Corollary 3.
Delta version obtained from Theorem 7 by taking α = 1
[ r 2 ^ , r 2 ] T ζ ( ı ) Δ ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı .
Corollary 4.
Nabla version obtained from Theorem 7 by taking α = 0
[ r 2 ^ , r 2 ] T ζ ( ı ) ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı .
Remark 2.
In Corollary 7 and T = R , we recapture [1] (Theorem 2).
We will need the following lemma to prove the subsequent results.
Lemma 1.
Let S 1 , S 2 , S 5 hold, such that
[ r 1 , r 1 + ^ ] T Ξ ( ı ) α ı = [ r 1 , r 2 ] T Υ ( ı ) α ı = [ r 2 ^ , r 2 ] T Ξ ( ı ) α ı .
Then,
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) α ı + [ r 1 + ^ , r 2 ] T ζ ( ı ) ζ ( r 1 + ^ ) Υ ( ı ) α ı ,
and
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = [ r 1 , r 2 ^ ] T ζ ( ı ) ζ ( r 2 ^ ) Υ ( ı ) α ı + [ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 2 ^ ) Ξ ( ı ) Υ ( ı ) α ı .
Proof. 
The suppositions of the Lemma imply that
r 1 r 1 + ^ r 2 and r 1 r 2 ^ r 2 .
Now we have proved (9), we see that
[ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) Υ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) α ı + [ r 1 , r 1 + ^ ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = [ r 1 , r 1 + ^ ] T ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 1 + ^ ) [ r 1 , r 1 + ^ ] T Ξ ( ı ) α ı [ r 1 , r 1 + ^ ] T Υ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı .
Since
[ r 1 , r 1 + ^ ] T Ξ ( ı ) α ı = [ r 1 , r 2 ] T Υ ( ı ) α ı ,
we have
ζ ( r 1 + ^ ) [ r 1 , r 1 + ^ ] T Ξ ( ı ) α ı [ r 1 , r 1 + ^ ] T Υ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 1 + ^ ) [ r 1 , r 2 ] T Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T Υ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = ζ ( r 1 + ^ ) [ r 1 + ^ , r 2 ] T Υ ( ı ) α ı [ r 1 + ^ , r 2 ] T ζ ( ı ) Υ ( ı ) α ı = [ r 1 + ^ , r 2 ] T ζ ( r 1 + ^ ) ζ ( ı ) Υ ( ı ) α ı .
Combination of (11) and (12) led to the required integral identity (9) asserted by the Lemma. The integral identity (16) can be proved similarly. The proof is complete. □
Corollary 5.
Delta version obtained from Lemma 1 by taking α = 1
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı = [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) Δ ı + [ r 1 + ^ , r 2 ] T ζ ( ı ) ζ ( r 1 + ^ ) Υ ( ı ) Δ ı ,
and
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı = [ r 1 , r 2 ^ ] T ζ ( ı ) ζ ( r 2 ^ ) Υ ( ı ) Δ ı + [ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 2 ^ ) Ξ ( ı ) Υ ( ı ) Δ ı ,
such that
[ r 1 , r 1 + ^ ] T Ξ ( ı ) Δ ı = [ r 1 , r 2 ] T Υ ( ı ) Δ ı = [ r 2 ^ , r 2 ] T Ξ ( ı ) Δ ı .
Corollary 6.
Nabla version obtained from Lemma 1 by taking α = 0
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı = [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) Δ ı + [ r 1 + ^ , r 2 ] T ζ ( ı ) ζ ( r 1 + ^ ) Υ ( ı ) Δ ı ,
and
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı = [ r 1 , r 2 ^ ] T ζ ( ı ) ζ ( r 2 ^ ) Υ ( ı ) Δ ı + [ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 2 ^ ) Ξ ( ı ) Υ ( ı ) ı .
such that
[ r 1 , r 1 + ^ ] T Ξ ( ı ) ı = [ r 1 , r 2 ] T Υ ( ı ) ı = [ r 2 ^ , r 2 ] T Ξ ( ı ) ı .
Theorem 8.
Suppose that S 1 , S 2 , S 6 , S 7 and S 13 give
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) α ı [ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 2 ^ ) Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) α ı .
Proof. 
In perspective of the considerations that the function ζ is nonincreasing on [ r 1 , r 2 ] and 0 Υ ( ı ) Ξ ( ı ) for all ı [ r 1 , r 2 ] , we infer that
[ r 1 , r 2 ^ ] T ζ ( ı ) ζ ( r 2 ^ ) Υ ( ı ) α ı 0 ,
and
[ r 2 ^ , r 2 ] T ζ ( r 2 ^ ) ζ ( ı ) Ξ ( ı ) Υ ( ı ) α ı 0 .
Using (9), (17) and (18), we find that
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) α ı [ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 2 ^ ) Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı .
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) α ı .
The confirmation is finished by joining the integral inequalities (19) and (20). □
Corollary 7.
Delta version obtained from Theorem 8 by taking α = 1
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) Δ ı [ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 2 ^ ) Ξ ( ı ) Υ ( ı ) Δ ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) Δ ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) Δ ı .
Corollary 8.
Nabla version obtained from Theorem 8 by taking α = 0
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ı [ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 2 ^ ) Ξ ( ı ) Υ ( ı ) ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ı .
Remark 3.
We can reclaim [2] (Theorem 1) in Corollary 7 and T = R .
Theorem 9.
Assume that S 1 , S 2 , S 6 , S 8 and S 13 are fulfilled. Then,
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) α ı + [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 2 ^ ) ψ ( ı ) | α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) α ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 1 + ^ ) ψ ( ı ) | α ı ,
Proof. 
Clearly, function ζ is nonincreasing on [ r 1 , r 2 ] and 0 ψ ( ı ) Υ ( ı ) Ξ ( ı ) ψ ( ı ) for all ı [ r 1 , r 2 ] ; so, we obtain
[ r 1 , r 1 + ^ ] T ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) α ı + [ r 1 + ^ , r 2 ] T ζ ( r 1 + ^ ) ζ ( ı ) Υ ( ı ) α ı = [ r 1 , r 1 + ^ ] T | ζ ( ı ) ζ ( r 1 + ^ ) | Ξ ( ı ) Υ ( ı ) α ı + [ r 1 + ^ , r 2 ] T | ζ ( r 1 + ^ ) ζ ( ı ) | Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T | ζ ( ı ) ζ ( r 1 + ^ ) | ψ ( ı ) α ı + [ r 1 + ^ , r 2 ] T | ζ ( r 1 + ^ ) ζ ( ı ) | ψ ( ı ) α ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 1 + ^ ) ψ ( ı ) | α ı .
Additionally,
[ r 1 , r 1 + ^ ] T ζ ( ı ) ζ ( r 1 + ^ ) Ξ ( ı ) Υ ( ı ) α ı + [ r 1 + ^ , r 2 ] T ζ ( r 1 + ^ ) ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 1 + ^ ) ψ ( ı ) | α ı .
Similarly, we find that
[ r 1 , r 2 ^ ] T ζ ( ı ) ζ ( r 2 ^ ) Υ ( ı ) α ı + [ r 2 ^ , r 2 ] T ζ ( r 2 ^ ) ζ ( ı ) Ξ ( ı ) Υ ( ı ) α ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 2 ^ ) ψ ( ı ) | α ı .
By combining (9), (16), and (22), (23), we arrive at the inequality (21), asserted by Theorem 9. □
Corollary 9.
Delta version obtained from Theorem 9 by taking α = 1
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) Δ ı + [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 2 ^ ) ψ ( ı ) | Δ ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) Δ ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 1 + ^ ) ψ ( ı ) | Δ ı ,
Corollary 10.
Nabla version obtained from Theorem 9 by taking α = 0
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ı + [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 2 ^ ) ψ ( ı ) | ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 1 + ^ ) ψ ( ı ) | ı ,
Remark 4.
If we take T = R , in Corollary 9, we recapture [2] (Theorem 2).
Theorem 10.
Let S 1 , S 2 , S 6 , S 9 be satisfied, and
0 ^ 1 [ r 1 , r 2 ] T Υ ( ı ) α ı ^ 2 r 2 r 1 .
Then,
[ r 2 ^ 1 , r 2 ] T ζ ( ı ) α ı + ζ ( r 2 ) [ r 1 , r 2 ] T Υ ( ı ) α ı ^ 1 + M [ r 1 , r 2 ] T | ζ ( ı ) f r 2 [ r 1 , r 2 ] T Υ ( ı ) α ı | α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ 2 ] T ζ ( ı ) α ı ζ ( r 2 ) ^ 2 [ r 1 , r 2 ] T Υ ( ı ) α ı M [ r 1 , r 2 ] T | ζ ( ı ) f r 1 + [ r 1 , r 2 ] T Υ ( ı ) α ı | α ı .
Proof. 
By using straightforward calculations, we have
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ 2 ] T ζ ( ı ) α ı + ζ ( r 2 ) ^ 2 [ r 1 , r 2 ] T Υ ( ı ) α ı = [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ 2 ] T ζ ( ı ) α ı + [ r 1 , r 1 + ^ 2 ] T ζ ( r 2 ) α ı [ r 1 , r 2 ] T ζ ( r 2 ) Υ ( ı ) α ı = [ r 1 , r 2 ] T [ ζ ( ı ) ζ ( r 2 ) ] Υ ( ı ) α ı [ r 1 , r 1 + ^ 2 ] T [ ζ ( ı ) ζ ( r 2 ) ] α ı [ r 1 , r 2 ] T [ ζ ( ı ) ζ ( r 2 ) ] Υ ( ı ) α ı [ r 1 , r 1 + [ r 1 , r 2 ] T Υ ( ı ) α ı ] [ ζ ( ı ) ζ ( r 2 ) ] α ı ,
where we used the theorem’s hypotheses
r 1 r 1 + ^ 1 r 1 + [ r 1 , r 2 ] T Υ ( ı ) α ı r 1 + ^ 2 r 2
and
ζ ( ı ) ζ ( r 2 ) 0 f o r a l l ı [ r 1 , r 2 ] .
The function ζ ( ı ) ζ ( r 2 ) is nonincreasing and integrable on [ r 1 , r 2 ] and, by applying Theorem 9 with Ξ ( ı ) = 1 , ψ ( ı ) = M and ζ ( ı ) replaced by ζ ( ı ) ζ ( r 2 ) ,
[ r 1 , r 2 ] T [ ζ ( ı ) ζ ( r 2 ) ] Υ ( ı ) α ı [ r 1 , r 1 + [ r 1 , r 2 ] T Υ ( ı ) α ı ] [ ζ ( ı ) ζ ( r 2 ) ] α ı M [ r 1 , r 2 ] T | ζ ( ı ) f r 1 + [ r 1 , r 2 ] T Υ ( ı ) α ı | α ı .
From (25) and (26), we obtain
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ 2 ] T ζ ( ı ) α ı + ζ ( r 2 ) ( ^ 2 [ r 1 , r 2 ] T Υ ( ı ) α ı ) M [ r 1 , r 2 ] T | ζ ( ı ) f r 1 + [ r 1 , r 2 ] T Υ ( ı ) α ı | α ı ,
which is the right-hand side inequality in (24).
Similarly, one can show that
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 2 ^ 1 , r 2 ] T ζ ( ı ) α ı + ζ ( r 2 ) [ r 1 , r 2 ] T Υ ( ı ) α ı ^ 2 [ r 1 , r 2 ] T ζ ( ı ) ζ ( r 2 ) Υ ( ı ) α ı + [ r 2 [ r 1 , r 2 ] T Υ ( ı ) α ı , r 2 ] ζ ( r 2 ) ζ ( ı ) α ı M [ r 1 , r 2 ] T ζ ( ı ) f r 2 [ r 1 , r 2 ] T Υ ( ı ) α ı α ı ,
which is the left-hand side inequality in (24). □
Corollary 11.
Delta version obtained from Theorem 10 by taking α = 1
[ r 2 ^ 1 , r 2 ] T ζ ( ı ) Δ ı + ζ ( r 2 ) [ r 1 , r 2 ] T Υ ( ı ) Δ ı ^ 1 + M [ r 1 , r 2 ] T | ζ ( ı ) f r 2 [ r 1 , r 2 ] T Υ ( ı ) Δ ı | Δ ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı [ r 1 , r 1 + ^ 2 ] T ζ ( ı ) Δ ı ζ ( r 2 ) ^ 2 [ r 1 , r 2 ] T Υ ( ı ) Δ ı M [ r 1 , r 2 ] T | ζ ( ı ) f r 1 + [ r 1 , r 2 ] T Υ ( ı ) Δ ı | Δ ı ,
such that
0 ^ 1 [ r 1 , r 2 ] T Υ ( ı ) Δ ı ^ 2 r 2 r 1 .
Corollary 12.
Nabla version obtained from Theorem 10 by taking α = 0
[ r 2 ^ 1 , r 2 ] T ζ ( ı ) ı + ζ ( r 2 ) [ r 1 , r 2 ] T Υ ( ı ) ı ^ 1 + M [ r 1 , r 2 ] T | ζ ( ı ) f r 2 [ r 1 , r 2 ] T Υ ( ı ) ı | ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı [ r 1 , r 1 + ^ 2 ] T ζ ( ı ) ı ζ ( r 2 ) ^ 2 [ r 1 , r 2 ] T Υ ( ı ) ı M [ r 1 , r 2 ] T | ζ ( ı ) f r 1 + [ r 1 , r 2 ] T Υ ( ı ) ı | ı ,
such that
0 ^ 1 [ r 1 , r 2 ] T Υ ( ı ) ı ^ 2 r 2 r 1 .
Remark 5.
Ref. [2] (Theorem 3) can be obtained if T = R in Corollary 11.
Theorem 11.
If S 1 , S 2 , S 6 , S 7 and S 14 hold. Then,
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) α ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 1 + ^ ) ψ ( ı ) | α ı .
Proof. 
This proof is similar to the proof of the right-hand side inequality in Theorem 9. □
Corollary 13.
Delta version obtained from Theorem by taking α = 1
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) Δ ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 1 + ^ ) ψ ( ı ) | Δ ı .
Corollary 14.
Nabla version obtained from Theorem by taking α = 0
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Ξ ( ı ) ı [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 1 + ^ ) ψ ( ı ) | ı .
Remark 6.
If we take T = R , in Corollary 13, we recapture [3] (Theorem 2.12).
Corollary 15.
Hypotheses S 1 , S 2 , S 3 , S 10 and S 11 yield
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı [ r 1 , r 1 + ^ ] T ζ ( ı ) α ı [ r 1 , r 2 ] T | ζ ( ı ) Ξ ( ı ) ζ ( r 1 + ^ ) Ξ ( r 1 + ^ ) Ξ ( ı ) ψ ( ı ) | α ı .
Proof. 
Insert Υ ( ı ) Ξ ( ı ) Υ ( ı ) , ζ ( ı ) ζ ( ı ) / Ξ ( ı ) and ψ ( ı ) Ξ ( ı ) ψ ( ı ) in Theorem 11. □
Corollary 16.
Delta version obtained in Corollary 15 by taking α = 1
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı [ r 1 , r 1 + ^ ] T ζ ( ı ) Δ ı [ r 1 , r 2 ] T | ζ ( ı ) Ξ ( ı ) ζ ( r 1 + ^ ) Ξ ( r 1 + ^ ) Ξ ( ı ) ψ ( ı ) | Δ ı .
Corollary 17.
Nabla version obtained in Corollary 15 by taking α = 0
[ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı [ r 1 , r 1 + ^ ] T ζ ( ı ) ı [ r 1 , r 2 ] T | ζ ( ı ) Ξ ( ı ) ζ ( r 1 + ^ ) Ξ ( r 1 + ^ ) Ξ ( ı ) ψ ( ı ) | ı .
Remark 7.
Ref. [3] (Corollary 2.3) can be recovered with the help of T = R , in Corollary 16.
Theorem 12.
If S 1 , S 2 , S 6 , S 7 and S 15 hold, then
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) α ı + [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 2 ^ ) ψ ( ı ) | α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı .
Proof. 
Carry out the same proof of the left-hand side inequality in Theorem 9. □
Corollary 18.
Delta version obtained from Theorem 12 by taking α = 1
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) Δ ı + [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 2 ^ ) ψ ( ı ) | Δ ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı .
Corollary 19.
Nabla version obtained from Theorem 12 by taking α = 0
[ r 2 ^ , r 2 ] T ζ ( ı ) Ξ ( ı ) ı + [ r 1 , r 2 ] T | ζ ( ı ) ζ ( r 2 ^ ) ψ ( ı ) | ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı .
Remark 8.
If we take T = R , in Corollary 18, we recapture [3] (Theorem 2.13).
Corollary 20.
Let S 1 , S 2 , S 3 , S 9 and S 12 , be fulfilled. Then,
[ r 2 ^ , r 2 ] T ζ ( ı ) α ı + [ r 1 , r 2 ] T | ζ ( ı ) Ξ ( ı ) ζ ( r 2 ^ ) Ξ ( r 2 ^ ) Ξ ( ı ) ψ ( ı ) | α ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) α ı .
Proof. 
Proof can be completed by taking Υ ( ı ) Ξ ( ı ) Υ ( ı ) , ζ ( ı ) ζ ( ı ) / Ξ ( ı ) and ψ ( ı ) Ξ ( ı ) ψ ( ı ) in Theorem 12. □
Corollary 21.
Delta version obtained from Corollary 20 by taking α = 1
[ r 2 ^ , r 2 ] T ζ ( ı ) Δ ı + [ r 1 , r 2 ] T | ζ ( ı ) Ξ ( ı ) ζ ( r 2 ^ ) Ξ ( r 2 ^ ) Ξ ( ı ) ψ ( ı ) | Δ ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) Δ ı .
Corollary 22.
Nabla version obtained from Corollary 20 by taking α = 0
[ r 2 ^ , r 2 ] T ζ ( ı ) ı + [ r 1 , r 2 ] T | ζ ( ı ) Ξ ( ı ) ζ ( r 2 ^ ) Ξ ( r 2 ^ ) Ξ ( ı ) ψ ( ı ) | ı [ r 1 , r 2 ] T ζ ( ı ) Υ ( ı ) ı .
Remark 9.
By letting T = R , in Corollary 21, we recapture [3] (Corollary 2.4).

3. Conclusions

In this article, we explore new generalizations of the integral Steffensen inequality given in [1,2,3] by the utilization of the diamond- α dynamic inequalities which are used in various problems involving symmetry. We generalize a number of those inequalities to a general time scale measure space. In addition to this, in order to obtain some new inequalities as special cases, we also extend our inequalities to a discrete and constant calculus.

Author Contributions

Conceptualization, resources and methodology, A.A.-M.E.-D. and O.B.; investigation, supervision, J.A.; data curation, O.B.; writing—original draft preparation, A.A.-M.E.-D.; writing—review and editing, J.A.; project administration, A.A.-M.E.-D. and O.B. All authors read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Pečarić, J.E. Notes on some general inequalities. Publ. Inst. Math. (Beogr.) (N.S.) 1982, 32, 131–135. [Google Scholar]
  2. Wu, S.H.; Srivastava, H.M. Some improvements and generalizations of Steffensen’s integral inequality. Appl. Math. Comput. 2007, 192, 422–428. [Google Scholar] [CrossRef]
  3. Pečarić, J.; Perušić, A.; Smoljak, K. Mercer and Wu- Srivastava generalisations of Steffensen’s inequality. Appl. Math. Comput. 2013, 219, 10548–10558. [Google Scholar] [CrossRef]
  4. Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
  5. Fatma, M.K.H.; El-Deeb, A.A.; Abdeldaim, A.; Khan, Z.A. On some generalizations of dynamic Opial-type inequalities on time scales. Adv. Differ. Equ. 2019, 2019, 323. [Google Scholar]
  6. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser Boston, Inc.: Boston, MA, USA, 2001. [Google Scholar]
  7. Sheng, Q.; Fadag, M.; Henderson, J.; Davis, J.M. An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal. Real World Appl. 2006, 7, 395–413. [Google Scholar] [CrossRef]
  8. Agarwal, R.; Bohner, M.; Peterson, A. Inequalities on time scales: A survey. Math. Inequal. Appl. 2001, 4, 535–557. [Google Scholar] [CrossRef]
  9. Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014. [Google Scholar]
  10. Saker, S.H.; El-Deeb, A.A.; Rezk, H.M.; Agarwal, R.P. On Hilbert’s inequality on time scales. Appl. Anal. Discret. Math. 2017, 11, 399–423. [Google Scholar] [CrossRef]
  11. Tian, Y.; El-Deeb, A.A.; Meng, F. Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales. Discret. Dyn. Nat. Soc. 2018, 2018, 5841985. [Google Scholar] [CrossRef]
  12. Abdeldaim, A.; El-Deeb, A.A.; Agarwal, P.; El-Sennary, H.A. On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 2018, 41, 4737–4753. [Google Scholar] [CrossRef]
  13. El-Deeb, A.A.; El-Sennary, H.A.; Khan, Z.A. Some Steffensen-type dynamic inequalities on time scales. Adv. Diff. Equ. 2019, 246. [Google Scholar] [CrossRef] [Green Version]
  14. El-Deeba, A.A.; Mario Krnić, M. Some Steffensen-Type Inequalities Over Time Scale Measure Spaces. Filomat 2020, 34, 4095–4106. [Google Scholar] [CrossRef]
  15. Anastassiou, G.A. Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 2010, 59, 3750–3762. [Google Scholar] [CrossRef] [Green Version]
  16. Anastassiou, G.A. Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 2010, 52, 556–566. [Google Scholar] [CrossRef]
  17. Anastassiou, G.A. Integral operator inequalities on time scales. Int. J. Differ. Equ. 2012, 7, 111–137. [Google Scholar]
  18. Sahir, M. Dynamic inequalities for convex functions harmonized on time scales. J. Appl. Math. Phys. 2017, 5, 2360–2370. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

El-Deeb, A.A.-M.; Bazighifan, O.; Awrejcewicz, J. A Variety of Dynamic Steffensen-Type Inequalities on a General Time Scale. Symmetry 2021, 13, 1738. https://doi.org/10.3390/sym13091738

AMA Style

El-Deeb AA-M, Bazighifan O, Awrejcewicz J. A Variety of Dynamic Steffensen-Type Inequalities on a General Time Scale. Symmetry. 2021; 13(9):1738. https://doi.org/10.3390/sym13091738

Chicago/Turabian Style

El-Deeb, Ahmed Abdel-Moneim, Omar Bazighifan, and Jan Awrejcewicz. 2021. "A Variety of Dynamic Steffensen-Type Inequalities on a General Time Scale" Symmetry 13, no. 9: 1738. https://doi.org/10.3390/sym13091738

APA Style

El-Deeb, A. A. -M., Bazighifan, O., & Awrejcewicz, J. (2021). A Variety of Dynamic Steffensen-Type Inequalities on a General Time Scale. Symmetry, 13(9), 1738. https://doi.org/10.3390/sym13091738

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop