A Modified Krasnosel’skiǐ–Mann Iterative Algorithm for Approximating Fixed Points of Enriched Nonexpansive Mappings
Abstract
:1. Introduction and Preliminaries
2. Strong Convergence of the Modified Krasnosel’skiǐ–Mann Algorithm
- (i)
- ;
- (ii)
- or .
- (C1)
- ;
- (C2)
- ;
- (C3)
- .
- (C1)
- ;
- (C2)
- ;
- (C3)
- .
- (i)
- T is not nonexpansive.
- (ii)
- T is a -enriched nonexpansive mapping.
- (iii)
- .
3. Numerical Experiments and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Fixed point theory for Lipschitzian-type mappings with applications. In Topological Fixed Point Theory and Its Applications; Springer: New York, NY, USA, 2009; Volume 6. [Google Scholar]
- Berinde, V. Iterative approximation of fixed points. In Lecture Notes in Mathematics, 2nd ed.; Springer: Berlin, Germany, 2007; Volume 1912. [Google Scholar]
- Chidume, C. Geometric properties of Banach spaces and nonlinear iterations. In Lecture Notes in Mathematics; Springer: London, UK, 2009; Volume 1965. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 1984; Volume 83. [Google Scholar]
- Mann, W.R. Mean value methods in iteration. Proc. Amer. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Krasnosel’skiǐ, M.A. Two remarks about the method of successive approximations. Uspehi Mat. Nauk 1955, 10, 123–127. (In Russian) [Google Scholar]
- Reich, S. Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 1979, 67, 274–276. [Google Scholar] [CrossRef] [Green Version]
- Imnang, S.; Suantai, S. Strong convergence of the modified Mann iterations in a Banach space. Thai J. Math. 2005, 3, 259–274. [Google Scholar]
- Kim, T.-H.; Xu, H.-K. Strong convergence of modified Mann iterations. Nonlinear Anal. 2005, 61, 51–60. [Google Scholar] [CrossRef]
- Takahashi, W.; Takeuchi, Y.; Kubota, R. Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2008, 341, 276–286. [Google Scholar] [CrossRef]
- Yao, Y.H.; Chen, R.; Yao, J.-C. Strong convergence and certain control conditions for modified Mann iteration. Nonlinear Anal. 2008, 68, 1687–1693. [Google Scholar] [CrossRef]
- Yao, Y.H.; Zhou, H.; Liou, Y.-C. Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings. J. Appl. Math. Comput. 2009, 29, 383–389. [Google Scholar] [CrossRef]
- Berinde, V. Approximating fixed points of enriched nonexpansive mappings by Krasnosel’skiǐ iteration in Hilbert spaces. Carpathian J. Math. 2019, 35, 293–304. [Google Scholar] [CrossRef]
- Berinde, V. Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement condition. Carpathian J. Math. 2020, 36, 27–34. [Google Scholar] [CrossRef]
- Petryshyn, W.V. Construction of fixed points of demicompact mappings in Hilbert space. J. Math. Anal. Appl. 1966, 14, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Browder, F.E. Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Amer. Math. Soc. 1968, 74, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.-K. Iterative algorithms for nonlinear operators. J. London Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Browder, F.E.; Petryshyn, W.V. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 1967, 20, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Anjum, R.; Berinde, V. Enriched Multivalued Contractions with Applications to Differential Inclusions and Dynamic Programming. Symmetry 2021, 13, 1350. [Google Scholar] [CrossRef]
- Bagherboum, M.; Razani, A. A modified Mann iterative scheme for a sequence of nonexpansive mappings and a monotone mapping with applications. Bull. Iranian Math. Soc. 2014, 40, 823–849. [Google Scholar]
- Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 2003, 279, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Pant, R.; Shukla, R. The Krasnosel’skiǐ–Mann algorithm for a countable family of non-self Lipschitzian mappings. Topol. Methods Nonlinear Anal. 2020, 56, 325–348. [Google Scholar] [CrossRef]
- Shukla, R.; Pant, R. Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 559–567. [Google Scholar] [CrossRef]
- Yao, Y.H.; Măruşter, S. Strong convergence of an iterative algorithm for variational inequalities in Banach spaces. Math. Comput. Model. 2011, 54, 325–329. [Google Scholar] [CrossRef]
- Yao, Y.H.; Noor, M.A.; Liou, Y.-C. A new hybrid iterative algorithm for variational inequalities. Appl. Math. Comput. 2010, 216, 822–829. [Google Scholar] [CrossRef]
n | ||||||
---|---|---|---|---|---|---|
0 | 1.95 | 1.95 | 1.95 | 1.95 | 2 | 2 |
1 | 1.23141 | 1.47094 | 0.99188 | 0.872115 | 0.8 | 0.666667 |
2 | 1.02174 | 1.20724 | 1.00275 | 1.07801 | 1.16 | 1.40741 |
3 | 1.00023 | 1.08094 | 0.999088 | 0.96523 | 0.921655 | 0.787958 |
4 | 1 | 1.029 | 1.0003 | 1.01832 | 1.05233 | 1.21564 |
5 | 1 | 1.00994 | 0.999899 | 0.991085 | 0.970681 | 0.86628 |
6 | 1 | 1.00335 | 1.00003 | 1.00452 | 1.0183 | 1.12235 |
7 | 1 | 1.00112 | 0.999989 | 0.997756 | 0.989283 | 0.916693 |
8 | 1 | 1.00037 | 1 | 1.00113 | 1.00652 | 1.07152 |
9 | 1 | 1.00012 | 0.999999 | 0.999438 | 0.99612 | 0.948614 |
10 | 1 | 1.00004 | 1 | 1.00028 | 1.00234 | 1.04244 |
11 | 1 | 1.00001 | 1 | 0.999859 | 0.9986 | 0.968526 |
12 | 1 | 1 | 1 | 1.00007 | 1.00084 | 1.02539 |
13 | 1 | 1 | 1 | 0.999965 | 0.999496 | 0.980812 |
14 | 1 | 1 | 1 | 1.00002 | 1.0003 | 1.01526 |
15 | 1 | 1 | 1 | 0.999991 | 0.999818 | 0.988337 |
N | 3 | 11 | 9 | 20 | 27 | 57 |
n | ||||||
---|---|---|---|---|---|---|
0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
1 | 1.25 | 1 | 1.5 | 1.625 | 1.7 | 1.83333 |
2 | 1.025 | 1 | 0.944444 | 0.867788 | 0.810588 | 0.688552 |
3 | 1.003 | 1 | 1.0207 | 1.08121 | 1.14906 | 1.36746 |
4 | 1 | 1 | 0.993381 | 0.963969 | 0.926035 | 0.801969 |
5 | 1 | 1 | 1.00224 | 1.01903 | 1.04911 | 1.19749 |
6 | 1 | 1 | 0.999258 | 0.990754 | 0.972376 | 0.875348 |
7 | 1 | 1 | 1.00025 | 1.00469 | 1.0172 | 1.11273 |
8 | 1 | 1 | 0.999917 | 0.997672 | 0.989911 | 0.922473 |
9 | 1 | 1 | 1.00003 | 1.00117 | 1.00614 | 1.06609 |
10 | 1 | 1 | 0.999991 | 0.999417 | 0.996349 | 0.952238 |
11 | 1 | 1 | 1 | 0.999863 | 1.0022 | 1.03928 |
12 | 1 | 1 | 0.999999 | 0.999854 | 0.998683 | 0.97077 |
13 | 1 | 1 | 1 | 1.00007 | 1.00079 | 1.02352 |
14 | 1 | 1 | 1 | 0.999964 | 0.999526 | 0.98219 |
15 | 1 | 1 | 1 | 1.00002 | 1.00028 | 1.01414 |
N | 3 | 1 | 13 | 22 | 28 | 56 |
n | ; | ; | |
---|---|---|---|
0 | 1.95 | 1.95 | 1.95 |
1 | 1.25754 | 0.983103 | 0.980064 |
2 | 1.00483 | 0.829478 | 0.770328 |
3 | 0.893985 | 0.837089 | 0.750714 |
4 | 0.847654 | 0.857922 | 0.770893 |
5 | 0.832607 | 0.875828 | 0.794782 |
6 | 0.832469 | 0.890237 | 0.816099 |
7 | 0.839068 | 0.901868 | 0.83419 |
8 | 0.848366 | 0.911383 | 0.849433 |
9 | 0.858399 | 0.919283 | 0.862333 |
10 | 0.868233 | 0.92593 | 0.873334 |
11 | 0.877455 | 0.931592 | 0.882795 |
12 | 0.885909 | 0.936466 | 0.891 |
13 | 0.893569 | 0.940704 | 0.898172 |
14 | 0.90047 | 0.94442 | 0.904487 |
15 | 0.906673 | 0.947704 | 0.910084 |
N | >1000 | >1000 | >1000 |
n | ; | ; | |
---|---|---|---|
0 | 0.5 | 0.5 | 0.5 |
1 | 1 | 1 | 1.25 |
2 | 0.777778 | 0.833333 | 1.1 |
3 | 0.752976 | 0.837727 | 1.05227 |
4 | 0.771613 | 0.858056 | 1.03188 |
5 | 0.79504 | 0.875862 | 1.02142 |
6 | 0.8162 | 0.890246 | 1.01536 |
7 | 0.834232 | 0.901871 | 1.01155 |
8 | 0.849452 | 0.911384 | 1.009 |
9 | 0.862341 | 0.919283 | 1.00721 |
10 | 0.873338 | 0.92593 | 1.0059 |
11 | 0.882797 | 0.931592 | 1.00492 |
12 | 0.891001 | 0.936466 | 1.00417 |
13 | 0.898172 | 0.940704 | 1.00357 |
14 | 0.904487 | 0.94442 | 1.0031 |
15 | 0.910085 | 0.947704 | 1.00271 |
N | >600 | 363 | 362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berinde, V. A Modified Krasnosel’skiǐ–Mann Iterative Algorithm for Approximating Fixed Points of Enriched Nonexpansive Mappings. Symmetry 2022, 14, 123. https://doi.org/10.3390/sym14010123
Berinde V. A Modified Krasnosel’skiǐ–Mann Iterative Algorithm for Approximating Fixed Points of Enriched Nonexpansive Mappings. Symmetry. 2022; 14(1):123. https://doi.org/10.3390/sym14010123
Chicago/Turabian StyleBerinde, Vasile. 2022. "A Modified Krasnosel’skiǐ–Mann Iterative Algorithm for Approximating Fixed Points of Enriched Nonexpansive Mappings" Symmetry 14, no. 1: 123. https://doi.org/10.3390/sym14010123
APA StyleBerinde, V. (2022). A Modified Krasnosel’skiǐ–Mann Iterative Algorithm for Approximating Fixed Points of Enriched Nonexpansive Mappings. Symmetry, 14(1), 123. https://doi.org/10.3390/sym14010123