Modeling of Cross Work Hardening and Apparent Normality Loss after Biaxial–Shear Loading Path Change
Abstract
:1. Introduction
2. Constitutive Modeling
2.1. Elasto-Visco-Plastic Constitutive Framework
2.2. Modified Teodosiu–Hu Hardening Model
3. Investigation of Cross Hardening and Apparent Normality Loss after Biaxial–Shear Loading Path Change
3.1. Simulations of Biaxial-to-Shear Experiments
3.2. Effect of Cross Hardening
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.; Hoferlin, E.; Van Bael, A.; Van Houtte, P.; Teodosiu, C. Finite element modeling of plastic anisotropy induced by texture and strain-path change. Int. J. Plast. 2003, 19, 647–674. [Google Scholar] [CrossRef]
- Hu, W. Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy. Int. J. Plast. 2007, 23, 620–639. [Google Scholar] [CrossRef]
- Mánik, T.; Holmedal, B.; Hopperstad, O.S. Strain-path change induced transients in flow stress, work hardening and r-values in aluminum. Int. J. Plast. 2015, 69, 1–20. [Google Scholar] [CrossRef] [Green Version]
- González-Arévalo, N.; Velázquez, J.; Díaz-Cruz, M.; Cervantes-Tobón, A.; Terán, G.; Hernández-Sanchez, E.; Capula-Colindres, S. Influence of aging steel on pipeline burst pressure prediction and its impact on failure probability estimation. Eng. Fail. Anal. 2021, 120, 104950. [Google Scholar] [CrossRef]
- Haddadi, H.; Bouvier, S.; Banu, M.; Maier, C.; Teodosiu, C. Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and identification. Int. J. Plast. 2006, 22, 2226–2271. [Google Scholar] [CrossRef]
- Bouvier, S.; Alves, J.; Oliveira, M.; Menezes, L. Modelling of anisotropic work-hardening behaviour of metallic materials subjected to strain-path changes. Comput. Mater. Sci. 2005, 32, 301–315. [Google Scholar]
- Wang, J.; Levkovitch, V.; Svendsen, B. Modeling and simulation of directional hardening in metals during non-proportional loading. J. Mater. Process. Technol. 2006, 177, 430–432. [Google Scholar] [CrossRef]
- Thuillier, S.; Manach, P.-Y. Comparison of the work-hardening of metallic sheets using tensile and shear strain paths. Int. J. Plast. 2009, 25, 733–751. [Google Scholar] [CrossRef]
- Vincze, G.; Barlat, F.; Rauch, E.F.; Tomé, C.N.; Butuc, M.C.; Grácio, J.J. Experiments and modeling of low carbon steel sheet subjected to double strain path changes. Metall. Mater. Trans. A 2013, 44, 4475–4479. [Google Scholar] [CrossRef] [Green Version]
- Barlat, F.; Vincze, G.; Grácio, J.; Lee, M.-G.; Rauch, E.; Tomé, C. Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels. Int. J. Plast. 2014, 58, 201–218. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, J.; Fang, G. Finite element modeling for deep-drawing of aluminum alloy sheet 6014-T4 using anisotropic yield and non-AFR models. Int. J. Adv. Manuf. Technol. 2019, 104, 535–549. [Google Scholar] [CrossRef]
- Kuroda, M.; Tvergaard, V. Use of abrupt strain path change for determining subsequent yield surface: Illustrations of basic idea. Acta Mater. 1999, 47, 3879–3890. [Google Scholar] [CrossRef]
- Khan, A.S.; Kazmi, R.; Pandey, A.; Stoughton, T. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part-I: A very low work hardening aluminum alloy (Al6061-T6511). Int. J. Plast. 2009, 25, 1611–1625. [Google Scholar] [CrossRef]
- Khan, A.S.; Pandey, A.; Stoughton, T. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: A very high work hardening aluminum alloy (annealed 1100 Al). Int. J. Plast. 2010, 26, 1421–1431. [Google Scholar] [CrossRef]
- Khan, A.S.; Pandey, A.; Stoughton, T. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part III: Yield surface in tension–tension stress space (Al 6061–T 6511 and annealed 1100 Al). Int. J. Plast. 2010, 26, 1432–1441. [Google Scholar] [CrossRef]
- Iftikhar, A.; Khan, A.S. The Evolution of Yield Loci with Finite Plastic Deformation along Proportional & Non-proportional Loading Paths in an Annealed Extruded AZ31 Magnesium Alloy. Int. J. Plast. 2021, 143, 103007. [Google Scholar]
- Hu, G.; Zhang, K.; Huang, S.; Ju, J.-W.W. Yield surfaces and plastic flow of 45 steel under tension-torsion loading paths. Acta Mech. Solida Sin. 2012, 25, 348–360. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, K.; Hu, G.; Lan, Y.; Chang, Y. Investigation of Yield Surfaces Evolution for Polycrystalline Aluminum after Pre-Cyclic Loading by Experiment and Crystal Plasticity Simulation. Materials 2020, 13, 3069. [Google Scholar] [CrossRef]
- Gotoh, M. A class of plastic constitutive equations with vertex effect—I. General theory. Int. J. Solids Struct. 1985, 21, 1101–1116. [Google Scholar] [CrossRef]
- Gotoh, M. A class of plastic constitutive equations with vertex effect—II. Discussions on the simplest form. Int. J. Solids Struct. 1985, 21, 1117–1129. [Google Scholar] [CrossRef]
- Hughes, T.J.; Shakib, F. Pseudo-corner theory: A simple enhancement of J2-flow theory for applications involving non-proportional loading. Eng. Comput. 1986, 3, 116–120. [Google Scholar] [CrossRef]
- Simo, J. A J2-flow theory exhibiting a corner-like effect and suitable for large-scale computation. Comput. Methods Appl. Mech. Eng. 1987, 62, 169–194. [Google Scholar] [CrossRef]
- Kuroda, M.; Tvergaard, V. Plastic spin associated with a non-normality theory of plasticity. Eur. J. Mech.-ASolids 2001, 20, 893–905. [Google Scholar] [CrossRef]
- Kuroda, M.; Tvergaard, V. A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity. J. Mech. Phys. Solids 2001, 49, 1239–1263. [Google Scholar] [CrossRef]
- Kuroda, M. A higher-order strain gradient plasticity theory with a corner-like effect. Int. J. Solids Struct. 2015, 58, 62–72. [Google Scholar] [CrossRef]
- Stoughton, T.B. A non-associated flow rule for sheet metal forming. Int. J. Plast. 2002, 18, 687–714. [Google Scholar] [CrossRef]
- Cvitanić, V.; Vlak, F.; Lozina, Ž. A finite element formulation based on non-associated plasticity for sheet metal forming. Int. J. Plast. 2008, 24, 646–687. [Google Scholar] [CrossRef]
- Safaei, M.; Lee, M.-G.; De Waele, W. Evaluation of stress integration algorithms for elastic–plastic constitutive models based on associated and non-associated flow rules. Comput. Methods Appl. Mech. Eng. 2015, 295, 414–445. [Google Scholar] [CrossRef]
- Taherizadeh, A.; Green, D.E.; Yoon, J.W. Evaluation of advanced anisotropic models with mixed hardening for general associated and non-associated flow metal plasticity. Int. J. Plast. 2011, 27, 1781–1802. [Google Scholar] [CrossRef]
- Lee, E.-H.; Stoughton, T.B.; Yoon, J.W. A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. Int. J. Plast. 2017, 99, 120–143. [Google Scholar] [CrossRef]
- Park, N.; Stoughton, T.B.; Yoon, J.W. A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule. Int. J. Plast. 2019, 121, 76–100. [Google Scholar] [CrossRef]
- Kuwabara, T.; Kuroda, M.; Tvergaard, V.; Nomura, K. Use of abrupt strain path change for determining subsequent yield surface: Experimental study with metal sheets. Acta Mater. 2000, 48, 2071–2079. [Google Scholar] [CrossRef]
- Yang, Y.; Balan, T. Prediction of the yield surface evolution and some apparent non-normality effects after abrupt strain-path change using classical plasticity. Int. J. Plast. 2019, 119, 331–343. [Google Scholar] [CrossRef]
- Yoshida, K.; Okada, N. Plastic flow behavior of fcc polycrystal subjected to nonlinear loadings over large strain range. Int. J. Plast. 2020, 127, 102639. [Google Scholar] [CrossRef]
- Hama, T.; Yagi, S.; Tatsukawa, K.; Maeda, Y.; Maeda, Y.; Takuda, H. Evolution of plastic deformation behavior upon strain-path changes in an A6022-T4 Al alloy sheet. Int. J. Plast. 2021, 137, 102913. [Google Scholar] [CrossRef]
- Teodosiu, C.; Hu, Z. Evolution of the intragranular microstructure at moderate and large strains: Modelling and computational significance. Simul. Mater. Process Theory Methods Appl. 1995, 173–182. [Google Scholar]
- Haddag, B.; Balan, T.; Abed-Meraim, F. Investigation of advanced strain-path dependent material models for sheet metal forming simulations. Int. J. Plast. 2007, 23, 951–979. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Vincze, G.; Baudouin, C.; Chalal, H.; Balan, T. Strain-path dependent hardening models with rigorously identical predictions under monotonic loading. Mech. Res. Commun. 2021, 114, 103615. [Google Scholar] [CrossRef]
- Pipard, J.-M.; Balan, T.; Abed-Meraim, F.; Lemoine, X. Elasto-visco-plastic modeling of mild steels for sheet forming applications over a large range of strain rates. Int. J. Solids Struct. 2013, 50, 2691–2700. [Google Scholar] [CrossRef]
Materials | (GPa) | |||
---|---|---|---|---|
A6XXX-T4 | 70 | 125 | 0.1 | 20 |
SPCE | 210 | 180 | 0.2 | 36 |
Parameters | . (MPa) | n | f | r | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ref | 600 | 0.02 | 0.4 | 100 | 150 | 0.4 | 3.9 | 1.1 | 0 | 247 | 2.2 | 28 | 1.9 |
0.5 Ref | 0.2 | 1.95 | 0.55 | 0 | 123.5 | 1.1 | 14 | 0.95 | |||||
2 Ref | 0.8 | 7.8 | 2.2 | 0 | 494 | 4.4 | 56 | 3.8 | |||||
3 Ref | 1.2 | 11.7 | 3.3 | 0 | 741 | 6.6 | 84 | 5.7 |
Parameters | (MPa) | n | f | r | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ref | 520 | 0.004 | 0.2 | 90 | 200 | 0.8 | 2.85 | 1.2 | 0 | 565 | 0.67 | 890 | 0.8 |
0.5 Ref | 0.4 | 1.43 | 0.6 | 0 | 282.5 | 0.34 | 445 | 0.4 | |||||
1.5 Ref | 1.2 | 4.28 | 2.8 | 0 | 847.5 | 1 | 1335 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Baudouin, C.; Balan, T. Modeling of Cross Work Hardening and Apparent Normality Loss after Biaxial–Shear Loading Path Change. Symmetry 2022, 14, 142. https://doi.org/10.3390/sym14010142
Yang Y, Baudouin C, Balan T. Modeling of Cross Work Hardening and Apparent Normality Loss after Biaxial–Shear Loading Path Change. Symmetry. 2022; 14(1):142. https://doi.org/10.3390/sym14010142
Chicago/Turabian StyleYang, Yanfeng, Cyrille Baudouin, and Tudor Balan. 2022. "Modeling of Cross Work Hardening and Apparent Normality Loss after Biaxial–Shear Loading Path Change" Symmetry 14, no. 1: 142. https://doi.org/10.3390/sym14010142
APA StyleYang, Y., Baudouin, C., & Balan, T. (2022). Modeling of Cross Work Hardening and Apparent Normality Loss after Biaxial–Shear Loading Path Change. Symmetry, 14(1), 142. https://doi.org/10.3390/sym14010142