Quantifying the Effect Size of Exposure-Outcome Association Using δ-Score: Application to Environmental Chemical Mixture Studies
Abstract
:1. Introduction
2. Methods
2.1. Cohen’s in Linear Regression
2.2. Formulation of Error Calibrated Cutoff in a New Hypothesis Testing Framework
2.3. Notion of -Score
- is the maximum value of Cohen’s such that the null is still rejected.
- For any , the asymptotic type 1 error, is a monotonically decreasing function of h, whereas the asymptotic type 2 error,is a monotonically increasing function of h.
2.4. Notion of Sufficient Sample Size
3. Illustration with a Simulated Example
4. Application in Exposure–Mixture Association of PFAS and Metals with Serum Lipids among US Adults
4.1. Study Population
4.2. Methods
4.3. Results
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EDC | Endocrine Disrupting Chemical |
PFAS | Perfluoroalkyl and Polyfluoroalkyl Substances |
ALT | Alanine aminotransferase |
CK-18 | Cytokeratin-18 |
NHANES | National Health and Nutrition Examination Survey |
BMI | Body Mass Index |
LDL-C | Low-Density Lipoprotein Cholesterol |
HDL-C | High-Density Lipoprotein Cholesterol |
WQS | Weighted Quantile Sum |
References
- Futran Fuhrman, V.; Tal, A.; Arnon, S. Why endocrine disrupting chemicals (edcs) challenge traditional risk assessment and how to respond. J. Hazard. Mater. 2015, 286, 589–611. [Google Scholar] [CrossRef] [PubMed]
- Cano, R.; Pérez, J.L.; Dávila, L.A.; Ortega, A.; Gómez, Y.; Valero-Cedeño, N.J.; Parra, H.; Manzano, A.; Véliz Castro, T.I.; Albornoz, M.P.D.; et al. Role of endocrine-disrupting chemicals in the pathogenesis of non-alcoholic fatty liver disease: A comprehensive review. Int. J. Mol. Sci. 2021, 22, 4807. [Google Scholar] [CrossRef] [PubMed]
- Midya, V.; Colicino, E.; Conti, D.V.; Berhane, K.; Garcia, E.; Stratakis, N.; Andrusaityte, S.; Basagaña, X.; Casas, M.; Fossati, S.; et al. Association of prenatal exposure to endocrine-disrupting chemicals with liver injury in children. JAMA Netw. Open 2022, 5, e2220176. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.A.; Greenland, S.; Hlatky, M.A.; Khoury, M.J.; Macleod, M.R.; Moher, D.; Schulz, K.F.; Tibshirani, R. Increasing value and reducing waste in research design, conduct, and analysis. Lancet 2014, 383, 166–175. [Google Scholar] [CrossRef]
- Wasserstein, R.L.; Lazar, N.A. The asa statement on p-values: Context, process, and purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: New York, NY, USA, 1976; pp. 273–403. [Google Scholar]
- Schäfer, T.; Schwarz, M.A. The meaningfulness of effect sizes in psychological research: Differences between sub-disciplines and the impact of potential biases. Front. Psychol. 2019, 10, 813. [Google Scholar] [CrossRef]
- Smithson, M. Confidence Intervals; Number No. 140 in Confidence Intervals; SAGE Publications: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Grissom, R.; Kim, J. Effect Sizes for Research: A Broad Practical Approach; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2005. [Google Scholar]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common snps explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef]
- Joubert, B.R.; Kioumourtzoglou, M.A.; Chamberlain, T.; Chen, H.Y.; Gennings, C.; Turyk, M.E.; Miranda, M.L.; Webster, T.F.; Ensor, K.B.; Dunson, D.B.; et al. Powering research through innovative methods for mixtures in epidemiology (prime) program: Novel and expanded statistical methods. Int. J. Environ. Res. Public Health 2022, 19, 1378. [Google Scholar] [CrossRef]
- Chen, H.Y.; Li, H.; Argos, M.; Persky, V.W.; Turyk, M.E. Statistical methods for assessing the explained variation of a health outcome by a mixture of exposures. Int. J. Environ. Res. Public Health 2022, 19, 2693. [Google Scholar] [CrossRef]
- Wilks, S.S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 1938, 9, 60–62. [Google Scholar] [CrossRef]
- Brown, B.W.; Lovato, J.; Russell, K. Asymptotic power calculations: Description, examples, computer code. Stat. Med. 1999, 18, 3137–3151. [Google Scholar] [CrossRef]
- Selya, A.; Rose, J.; Dierker, L.; Hedeker, D.; Mermelstein, R. A practical guide to calculating cohen’s f2, a measure of local effect size, from proc mixed. Front. Psychol. 2012, 3, 111. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1998; pp. 199–213. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Dziak, J.J.; Coffman, D.L.; Lanza, S.T.; Li, R.; Jermiin, L.S. Sensitivity and specificity of information criteria. Brief. Bioinform. 2019, 21, 553–565. [Google Scholar] [CrossRef]
- Vuong, Q.H. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 1989, 57, 307–333. [Google Scholar] [CrossRef]
- Schönbrodt, F.D.; Wagenmakers, E.J.; Zehetleitner, M.; Perugini, M. Sequential hypothesis testing with bayes factors: Efficiently testing mean differences. Psychol. Methods 2017, 22, 322–339. [Google Scholar] [CrossRef]
- Morey, R.D.; Rouder, J.N. Bayes factor approaches for testing interval null hypotheses. Psychol. Methods 2011, 16, 406. [Google Scholar] [CrossRef]
- Kruschke, J.K. Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen. 2013, 142, 573. [Google Scholar] [CrossRef]
- Liao, J.G.; Midya, V.; Berg, A. Connecting and contrasting the bayes factor and a modified rope procedure for testing interval null hypotheses. Am. Stat. 2020, 75, 256–264. [Google Scholar] [CrossRef]
- Midya, V.; Liao, J. Systematic deviation in mean of log bayes factor: Implication and application. Commun. Stat.-Theory Methods 2021, 1–10. [Google Scholar] [CrossRef]
- Schuirmann, D.J. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 1987, 15, 657–680. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.F. Power of the two one-sided tests procedure in bioequivalence. J. Pharmacokinet. Biopharm. 1990, 18, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.F. Power for testing multiple instances of the two one-sided tests procedure. Int. J. Biostat. 2009, 5, 1–14. [Google Scholar] [CrossRef]
- Long, C.; Chen, W.; Yang, R.; Yao, D. Ratio estimation of the population mean using auxiliary information under the optimal sampling design. Probab. Eng. Inf. Sci. 2022, 36, 449–460. [Google Scholar] [CrossRef]
- Liu, H.S.; Wen, L.L.; Chu, P.L.; Lin, C.Y. Association among total serum isomers of perfluorinated chemicals, glucose homeostasis, lipid profiles, serum protein and metabolic syndrome in adults: Nhanes, 2013–2014. Environ. Pollut. 2018, 232, 73–79. [Google Scholar] [CrossRef]
- Jain, R.B.; Ducatman, A. Associations between lipid/lipoprotein levels and perfluoroalkyl substances among us children aged 6–11 years. Environ. Pollut. 2018, 243, 1–8. [Google Scholar] [CrossRef]
- Meneguzzi, A.; Fava, C.; Castelli, M.; Minuz, P. Exposure to perfluoroalkyl chemicals and cardiovascular disease: Experimental and epidemiological evidence. Front. Endocrinol. 2021, 12, 850. [Google Scholar] [CrossRef]
- Buhari, O.; Dayyab, F.; Igbinoba, O.; Atanda, A.; Medhane, F.; Faillace, R. The association between heavy metal and serum cholesterol levels in the us population: National health and nutrition examination survey 2009–2012. Hum. Exp. Toxicol. 2020, 39, 355–364. [Google Scholar] [CrossRef]
- CDC; NCHS. US National Health and Nutrition Examination Survey Data, 2017–2018. Available online: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Laboratory&Cycle=2017-2018 (accessed on 1 September 2022).
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2014, 16, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Colicino, E.; Pedretti, N.F.; Busgang, S.A.; Gennings, C. Per- and poly-fluoroalkyl substances and bone mineral density. Environ. Epidemiol. 2020, 4, e092. [Google Scholar] [CrossRef] [PubMed]
- Keil, A.P.; Buckley, J.P.; O’Brien, K.M.; Ferguson, K.K.; Zhao, S.; White, A.J. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ. Health Perspect. 2020, 128, 047004. [Google Scholar] [CrossRef]
- Gibson, E.A.; Nunez, Y.; Abuawad, A.; Zota, A.R.; Renzetti, S.; Devick, K.L.; Gennings, C.; Goldsmith, J.; Coull, B.A.; Kioumourtzoglou, M.A. An overview of methods to address distinct research questions on environmental mixtures: An application to persistent organic pollutants and leukocyte telomere length. Environ. Health 2019, 18, 76. [Google Scholar] [CrossRef]
- Nunez, Y.; Gibson, E.A.; Tanner, E.M.; Gennings, C.; Coull, B.A.; Goldsmith, J.; Kioumourtzoglou, M.A. Reflection on modern methods: Good practices for applied statistical learning in epidemiology. Int. J. Epidemiol. 2021, 50, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Reyes, J.E.; López Quintero, F.O.; Wiff, R. Bayesian modeling of individual growth variability using back-calculation: Application to pink cusk-eel (genypterus blacodes) off chile. Ecol. Model. 2018, 385, 145–153. [Google Scholar] [CrossRef]
- Vincenzi, S.; Mangel, M.; Crivelli, A.J.; Munch, S.; Skaug, H.J. Determining individual variation in growth and its implication for life-history and population processes using the empirical bayes method. PLoS Comput. Biol. 2014, 10, e1003828. [Google Scholar] [CrossRef] [PubMed]
- Maitre, L.; Guimbaud, J.B.; Warembourg, C.; Güil-Oumrait, N.; Marcela Petrone, P.; Chadeau-Hyam, M.; Vrijheid, M.; Gonzalez, J.R.; Basagaña, X. State-of-the-art methods for exposure-health studies: Results from the exposome data challenge event. Environ. Int. 2022, 168, 107422. [Google Scholar] [CrossRef]
- Cui, Y.; Eccles, K.M.; Kwok, R.K.; Joubert, B.R.; Messier, K.P.; Balshaw, D.M. Integrating multiscale geospatial environmental data into large population health studies: Challenges and opportunities. Toxics 2022, 10, 403. [Google Scholar] [CrossRef]
Numerical Approximation Using | Using Theorem | |||||
---|---|---|---|---|---|---|
Equation (3) | (1) | |||||
1 | 250 | 0.0042895 | −0.0031 | 0.0042893 | −0.0021 | |
1 | 250 | 0.0171573 | −0.0100 | 0.0171573 | −0.0086 | |
5 | 250 | 0.0043764 | −0.0025 | 0.0042893 | −0.0021 | |
5 | 250 | 0.0172491 | −0.0090 | 0.0171573 | −0.0086 | |
1 | 500 | 0.0042896 | −0.0028 | 0.0042893 | −0.0021 | |
1 | 500 | 0.0171573 | −0.0094 | 0.0171573 | −0.0086 | |
5 | 500 | 0.0043764 | −0.0024 | 0.0042893 | −0.0021 | |
5 | 500 | 0.0172491 | −0.0087 | 0.0171573 | −0.0086 |
Total | Male | Female | % Observations ≥ LLOD | |
---|---|---|---|---|
Sample size (n) | 683 | 339 | 344 | |
Baseline Covariates | ||||
Age (years) | 49.51 (18.77) | 50.38 (18.81) | 48.65 (18.73) | |
Ethnicity | ||||
Mexican American | 88 | 43 (49%) | 45 (51%) | |
Other Hispanic | 58 | 23 (40%) | 35 (60%) | |
Non-Hispanic White | 260 | 135 (52%) | 125 (48%) | |
Non-Hispanic Black | 155 | 79 (51%) | 76 (49%) | |
Other Race—Including Multi-Racial | 122 | 59 (48%) | 63 (52%) | |
Body mass index (kg/m) | 29.59 (7.90) | 28.67 (6.36) | 30.49 (9.09) | |
Smoking Status | ||||
Never | 402 | 170 (42%) | 232 (58%) | |
Smoked at least 100 cigarettes | ||||
but doesn’t smoke now | 163 | 100 (61%) | 63 (39%) | |
Smoked at least 100 cigarettes | ||||
and still smokes now | 118 | 69 (58%) | 49 (42%) | |
Ratio of family income to poverty | 2.56 (1.61) | 2.64 (1.63) | 2.48 (1.59) | |
Outcomes | ||||
HDL-C (mg/dL) | 53.91 (15.53) | 49.19 (13.10) | 58.56 (16.33) | |
LDL-C (mg/dL) | 109.35 (37.11) | 108.99 (35.35) | 109.71 (38.83) | |
PFAS exposures (Unadjusted geometric means with 95% confidence intervals) | ||||
PFDeA (ng/mL) | 0.20 (0.19, 0.21) | 0.21 (0.19, 0.22) | 0.20 (0.18, 0.22) | 68.73 % |
PFHxS (ng/mL) | 1.10 (1.03, 1.17) | 1.49 (1.38, 1.61) | 0.81 (0.74, 0.89) | 99.12% |
Me-PFOSA-AcOH (ng/mL) | 0.13 (0.12, 0.14) | 0.14 (0.13, 0.15) | 0.12 (0.11, 0.13) | 38.64% |
PFNA (ng/mL) | 0.42 (0.39, 0.44) | 0.46 (0.42, 0.5) | 0.38 (0.34, 0.42) | 91.74% |
PFUA (ng/mL) | 0.14 (0.13, 0.15) | 0.14 (0.13, 0.15) | 0.14 (0.13, 0.15) | 41.59% |
n-PFOA (ng/mL) | 1.28 (1.22, 1.35) | 1.52 (1.42, 1.64) | 1.08 (1, 1.17) | 99.41% |
n-PFOS (ng/mL) | 3.26 (3.04, 3.5) | 4.11 (3.74, 4.51) | 2.59 (2.35, 2.86) | 99.41% |
Sm-PFOS (ng/mL) | 1.28 (1.19, 1.37) | 1.73 (1.58, 1.89) | 0.95 (0.86, 1.04) | 98.82 % |
Lead, Cadmium, Total Mercury, Selenium, & Manganese exposures | ||||
(Unadjusted geometric means with 95% confidence intervals) | ||||
Cd (g/L) | 0.32 (0.3, 0.34) | 0.29 (0.27, 0.32) | 0.35 (0.32, 0.38) | 91.36% |
Pb (g/dL) | 0.91 (0.86, 0.96) | 1.09 (1, 1.18) | 0.76 (0.7, 0.82) | 100% |
Mn (g/L) | 9.45 (9.21, 9.7) | 8.91 (8.62, 9.22) | 10.01 (9.64, 10.41) | 100% |
THg (g/L) | 0.78 (0.72, 0.84) | 0.81 (0.73, 0.9) | 0.75 (0.67, 0.83) | 84.77% |
Se (g/L) | 188.62 (186.75, 190.52) | 189.28 (186.57, 192.04) | 187.97 (185.38, 190.6) | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Midya, V.; Liao, J.; Gennings, C.; Colicino, E.; Teitelbaum, S.L.; Wright, R.O.; Valvi, D. Quantifying the Effect Size of Exposure-Outcome Association Using δ-Score: Application to Environmental Chemical Mixture Studies. Symmetry 2022, 14, 1962. https://doi.org/10.3390/sym14101962
Midya V, Liao J, Gennings C, Colicino E, Teitelbaum SL, Wright RO, Valvi D. Quantifying the Effect Size of Exposure-Outcome Association Using δ-Score: Application to Environmental Chemical Mixture Studies. Symmetry. 2022; 14(10):1962. https://doi.org/10.3390/sym14101962
Chicago/Turabian StyleMidya, Vishal, Jiangang Liao, Chris Gennings, Elena Colicino, Susan L. Teitelbaum, Robert O. Wright, and Damaskini Valvi. 2022. "Quantifying the Effect Size of Exposure-Outcome Association Using δ-Score: Application to Environmental Chemical Mixture Studies" Symmetry 14, no. 10: 1962. https://doi.org/10.3390/sym14101962
APA StyleMidya, V., Liao, J., Gennings, C., Colicino, E., Teitelbaum, S. L., Wright, R. O., & Valvi, D. (2022). Quantifying the Effect Size of Exposure-Outcome Association Using δ-Score: Application to Environmental Chemical Mixture Studies. Symmetry, 14(10), 1962. https://doi.org/10.3390/sym14101962