A Comparative Study of the Genetic Deep Learning Image Segmentation Algorithms
Abstract
:1. Introduction
1.1. Historical Background of the Genetic Algorithms for Segmentation
1.2. Challenges in Medical Image Segmentation
2. Materials and Methods
2.1. Two Algorithms for Image Segmentation
- The parameter set is higher than the best fitness value of the predefined acceptance threshold;
- The optimal fitness of the population fails to improve for five consecutive generations;
- The number of iterations is greater than 100.
- At the beginning, randomly select k points from the sample set as the initial clustering centers of the k categories;
- In the ith iteration, for any sample point, find the distance to the k centers of the cluster, and assign the sample point to the class of the cluster center with the shortest distance;
- Use the genetic algorithm to update the cluster center of this class;
- For all k cluster centers, if the value remains the same or the difference is small after updating by the iterative method of 2, 3, the iteration ends; otherwise, the iteration continues [40].
2.2. Datasets
3. Results and Analysis
3.1. Results of Methods
3.2. Result Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steane, A. Quantum computing. Rep. Prog. Phys. 1998, 61, 117. [Google Scholar] [CrossRef]
- Potok, T.E.; Schuman, C.; Young, S.; Patton, R.; Spedalieri, F.; Liu, J.; Yao, K.T.; Rose, G.; Chakma, G. A study of complex deep learning networks on high-performance, neuromorphic, and quantum computers. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2018, 14, 19. [Google Scholar] [CrossRef]
- Alaminos, D.; Salas, M.B.; Fernández-Gámez, M.A. Quantum computing and deep learning methods for GDP growth forecasting. Comput. Econ. 2022, 59, 803–829. [Google Scholar] [CrossRef]
- Prasantha, H.S.; Dr., S.; Murthy, D.; Madhavi, L. Medical Image Segmentation. Int. J. Comput. Sci. Eng. 2010, 760–762, 1590–1593. [Google Scholar]
- Heimann, T.; Meinzer, H.P. Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 2009, 13, 543–563. [Google Scholar] [CrossRef] [PubMed]
- Sohail, A.; Fahmy, M.A.; Khan, U.A. XAI hybrid multi-staged algorithm for routine & quantum boosted oncological medical imaging. Comput. Part. Mech. 2022, 1–11. [Google Scholar] [CrossRef]
- Sohail, A. Inference of biomedical data sets using Bayesian machine learning. Biomed. Eng. Appl. Basis Commun. 2019, 31, 1950030. [Google Scholar] [CrossRef]
- Sohail, A.; Arif, F. Supervised and unsupervised algorithms for bioinformatics and data science. Prog. Biophys. Mol. Biol. 2020, 151, 14–22. [Google Scholar] [CrossRef]
- Sohail, A. Genetic algorithms in the fields of artificial intelligence and data sciences. Ann. Data Sci. 2021, 1–12. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, H.; Wang, D.; Alnuaim, A.A.; Firdausi, M.; Mostafa, A.M. SEI2RS malware propagation model considering two infection rates in cyber–physical systems. Phys. A Stat. Mech. Its Appl. 2022, 597, 127207. [Google Scholar] [CrossRef]
- Al-Utaibi, K.A.; Sohail, A.; Zafar, A.; Talha, R.; Sait, S.M. AI Optimization of the Exothermic Reaction of Ethylene Oxide with Water. Biomed. Eng. Appl. Basis Commun. 2021, 33, 2150033. [Google Scholar] [CrossRef]
- Al-Utaibi, K.A.; Idrees, M.; Sohail, A.; Arif, F.; Nutini, A.; Sait, S.M. Artificial intelligence to link environmental endocrine disruptors (EEDs) with bone diseases. Int. J. Model. Simulation, Sci. Comput. 2021, 13, 2250019. [Google Scholar] [CrossRef]
- Al-Utaibi, K.A.; Sohail, A.; Arif, F.; Celik, S.; Sait, S.M.; Keskin, D.B. Neural networks to understand the physics of oncological medical imaging. Biomed. Eng. Appl. Basis Commun. 2022, 2250036. [Google Scholar] [CrossRef]
- Idrees, M.; Sohail, A. A computational framework and sensitivity analysis for the hormonal treatment of bone. Clin. Biomech. 2020, 73, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Ma, J.; Feng, Z. Image Segmentation of Pitaya Disease Based on Genetic Algorithm and Otsu Algorithm. J. Phys. Conf. Ser. 2021, 1955, 012082. [Google Scholar] [CrossRef]
- Lakshmi, V.K.; Feroz, C.A.; Merlin, J. Automated Detection and Segmentation of Brain Tumor Using Genetic Algorithm. In Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 13–14 December 2018. [Google Scholar]
- Weese, J.; Lorenz, C. Four Challenges in Medical Image Analysis from an Industrial Perspective. Med. Image Anal. 2016, 33, 44–49. [Google Scholar] [CrossRef]
- Qiu, Y.; Malomed, B.A.; Mihalache, D.; Zhu, X.; Peng, X.; He, Y. Stabilization of single-and multi-peak solitons in the fractional nonlinear Schrödinger equation with a trapping potential. Chaos Solitons Fractals 2020, 140, 110222. [Google Scholar] [CrossRef]
- Youssry, A.; El-Rafei, A.; Elramly, S. A quantum mechanics-based framework for image processing and its application to image segmentation. Quantum Inf. Process. 2015, 14, 3613–3638. [Google Scholar] [CrossRef]
- Aytekin, Ç.; Kiranyaz, S.; Gabbouj, M. Quantum mechanics in computer vision: Automatic object extraction. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; IEEE: New York, NY, USA, 2013; pp. 2489–2493. [Google Scholar]
- Sohail, A.; Rees, J.M.; Zimmerman, W.B. Analysis of capillary-gravity waves using the discrete periodic inverse scattering transform. Colloids Surf. A Physicochem. Eng. Asp. 2011, 391, 42–50. [Google Scholar] [CrossRef]
- Sohail, A.; Yu, Z.; Arif, R.; Nutini, A.; Nofal, T.A. Piecewise differentiation of the fractional order CAR-T cells-SARS-2 virus model. Results Phys. 2021, 33, 105046. [Google Scholar] [CrossRef]
- Yu, Z.; Sohail, A.; Nofal, T.A.; Tavares, J. Explainability of neural network clustering in interpreting the COVID-19 emergency data. Fractals 2021, 10, S0218348X22401223. [Google Scholar] [CrossRef]
- Yu, Z.; Abdel-Salam, A.S.G.; Sohail, A.; Alam, F. Forecasting the impact of environmental stresses on the frequent waves of COVID19. Nonlinear Dyn. 2021, 106, 1509–1523. [Google Scholar] [CrossRef] [PubMed]
- Arif, R.; Fahmy, M.A.; Amin, N.; Farwa, S.; Sohail, A.; Gepreel, K.A. Crossover behaviour of the Zika virus infection and the delayed immune response. Results Phys. 2022, 41, 105892. [Google Scholar] [CrossRef]
- Al-Utaibi, K.A.; Sohail, A.; Yu, Z.; Arif, R.; Nutini, A.; Abdel-Salam, A.S.G.; Sait, S.M. Dynamical analysis of the delayed immune response to cancer. Results Phys. 2021, 26, 104282. [Google Scholar] [CrossRef]
- Yu, Z.; Sohail, A.; Nutini, A.; Arif, R. Delayed Modeling Approach to Forecast the Periodic Behavior of SARS-2. Front. Mol. Biosci. 2021, 7, 585245. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Ellahi, R.; Nutini, A.; Sohail, A.; Sait, S.M. Modeling and simulations of CoViD-19 molecular mechanism induced by cytokines storm during SARS-CoV2 infection. J. Mol. Liq. 2021, 327, 114863. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Arif, R.; Fahmy, M.A.; Sohail, A. Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model. Chaos Solitons Fractals 2021, 150, 111202. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Sohail, A. Bio-algorithms for the modeling and simulation of cancer cells and the immune response. Bio-Algorithms Med-Syst. 2021, 17, 55–63. [Google Scholar] [CrossRef]
- Lou, L.; Zeng, H.; Xiong, J.; Li, L.; Gao, W. Schrödinger transform of image: A new tool for image analysis. In Measurements in Quantum Mechanics; Books on Demand: Norderstedt, Germany, 2012. [Google Scholar]
- Chahid, A.; Serrai, H.; Achten, E.; Laleg-Kirati, T.M. Adaptive method for MRI enhancement using squared eigenfunctions of the Schrödinger operator. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Torino, Italy, 19–21 October 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Benigno, G.B.; Menon, R.S.; Serrai, H. Schrödinger filtering: A precise EEG despiking technique for EEG-fMRI gradient artifact. NeuroImage 2021, 226, 117525. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Sohail, A.; Arif, R.; Nutini, A.; Nofal, T.A.; Tunc, S. Modeling the crossover behavior of the bacterial infection with the COVID-19 epidemics. Results Phys. 2022, 39, 105774. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Tian, L.; Steward, B.L. Color image segmentation with genetic algorithm for in-field weed sensing. Trans. ASAE 2000, 43, 1019. [Google Scholar] [CrossRef]
- Oliveira, P.; Yamanaka, K. Image Segmentation Using Multilevel Thresholding and Genetic Algorithm: An Approach. In Proceedings of the 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA), Changsha, China, 21–23 September 2018. [Google Scholar]
- Yoshinari, K.; Hoshi, Y.; Taguchi, A. Color image enhancement in HSI color space without gamut problem. In Proceedings of the 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), Athens, Greece, 21–23 May 2014; pp. 578–581. [Google Scholar] [CrossRef]
- Selva. Color Image Segmentation Using Genetic Algorithm(Clustering). MATLAB Central File Exchange. 2022. Available online: https://www.mathworks.com/matlabcentral/fileexchange/64223-color-image-segmentation-using-genetic-algorithm-clustering (accessed on 1 August 2022).
- Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [Google Scholar] [CrossRef]
- Qureshi, M.N.; Ahamad, M.V. An Improved Method for Image Segmentation Using K-Means Clustering with Neutrosophic Logic. Procedia Comput. Sci. 2018, 132, 534–540. [Google Scholar] [CrossRef]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Halvorsen, P.; de Lange, T.; Johansen, D.; Johansen, H.D. Kvasir-seg: A segmented polyp dataset. In Proceedings of the International Conference on Multimedia Modeling, Daejeon, Korea, 5–8 January 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 451–462. [Google Scholar]
- Codella, N.; Rotemberg, V.; Tschandl, P.; Celebi, M.E.; Dusza, S.; Gutman, D.; Helba, B.; Kalloo, A.; Liopyris, K.; Marchetti, M.; et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv 2019, arXiv:1902.03368. [Google Scholar]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180160. [Google Scholar] [CrossRef]
- Codella, N.C.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; IEEE: New York, NY, USA, 2018; pp. 168–172. [Google Scholar]
- Li, K.; Fathan, M.I.; Patel, K.; Zhang, T.; Zhong, C.; Bansal, A.; Rastogi, A.; Wang, J.S.; Wang, G. Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations. PLoS ONE 2021, 16, e0255809. [Google Scholar] [CrossRef] [PubMed]
Dataset | Accuracy | Error |
---|---|---|
Kvasir-SEG | 78.52% | 21.48% |
ISIC2018 | 86.89% | 13.12% |
Dataset | Accuracy | Error |
---|---|---|
Kvasir-SEG | 81.27% | 18.73% |
ISIC2018 | 81.05% | 19.75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yousaf, M.; Liu, D.; Sohail, A. A Comparative Study of the Genetic Deep Learning Image Segmentation Algorithms. Symmetry 2022, 14, 1977. https://doi.org/10.3390/sym14101977
Wang W, Yousaf M, Liu D, Sohail A. A Comparative Study of the Genetic Deep Learning Image Segmentation Algorithms. Symmetry. 2022; 14(10):1977. https://doi.org/10.3390/sym14101977
Chicago/Turabian StyleWang, Wenbo, Muhammad Yousaf, Ding Liu, and Ayesha Sohail. 2022. "A Comparative Study of the Genetic Deep Learning Image Segmentation Algorithms" Symmetry 14, no. 10: 1977. https://doi.org/10.3390/sym14101977
APA StyleWang, W., Yousaf, M., Liu, D., & Sohail, A. (2022). A Comparative Study of the Genetic Deep Learning Image Segmentation Algorithms. Symmetry, 14(10), 1977. https://doi.org/10.3390/sym14101977