Oscillation Results of Third-Order Differential Equations with Symmetrical Distributed Arguments
Abstract
:1. Introduction
- (I1)
- and such that
- (I2)
- does not vanish identically;
- (I3)
- , and
- (I4)
- Furthermore
- (I4a)
- for
2. Some Lemmas
3. Main Results
Oscillation criteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, X.H. Oscillation for first order superlinear delay differential equations. J. Lond. Math. Soc. 2002, 65, 115–122. [Google Scholar] [CrossRef]
- Li, B. Oscillation Of First Order Delay Differential Equations. Am. Math. Soc. 1996, 124, 3729–3737. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation. J. Inequal. Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation of second order neutral delay differential equations of Emden-Fowler type. Acta Math. Hung. 2003, 100, 7–32. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Debnath, P.; Srivastava, H.M.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus—Recent Advances and Applications; Springer: Singapore, 2022. [Google Scholar]
- Turab, A.; Sintunavarat, W. A unique solution of the iterative boundary value problem for a second-order differential equation approached by fixed point results. Alex. Eng. J. 2021, 60, 5797–5802. [Google Scholar] [CrossRef]
- Sundar, S.; Scapellato, A. Some conditions for the oscillation of secondorder differential equations with several mixed delays. J. Fixed Point Theory Appl. 2022, 24, 18. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. On asymptotic behavior of solutions to higher-order sublinear emden–fowler delay differential equations. Appl. Math. Lett. 2017, 67, 53–59. [Google Scholar] [CrossRef]
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Tunc, C.; Tunc, O. On the stability, integrability and boundedness analyses of systems of integro-differential equations with time-delay retardation. RACSAM 2021, 115, 17. [Google Scholar] [CrossRef]
- Changjin, X.; Liao, M.; Li, P.; Guo, Y.; Liu, Z. Bifurcation properties for fractional order delayed BAM neural networks. Cogn. Comput. 2021, 13, 322–356. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; Regan, D.O. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic Publishers: Alphen aan den Rijn, Netherlands, 2000. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.X.; Zhang, C.H. Oscillation of third-order nonlinear delay differential equations, Taiwan. J. Math. 2013, 17, 545–558. [Google Scholar]
- Kitamura, Y.; Kusano, T. Oscillation of first-order nonlinear differential equations with deviating arguments. Proc. Amer. Math. Soc. 1980, 78, MR548086. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Hassan, T.S.; Elmatary, B.M. Oscillation criteria for third-order delay nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2012, 2012, 11. [Google Scholar] [CrossRef]
- Thandapani, E.; Li, T. On the oscillation of third-order quasi-linear neutral functional differential equations. Arch. Math. 2011, 47, 181–199. [Google Scholar]
- Grace, S.R.; Agarwal, R.P.; Pavani, R.; Thandapani, E. On the oscillation of certain third-order nonlinear functional differential equations. Appl. Math. Comput. 2008, 202, 102–112. [Google Scholar] [CrossRef]
- Erbe, L. Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations. Pac. J. Math. 1976, 64, 369–385. [Google Scholar] [CrossRef]
- Qaraad, B.; Elabbasy, E.M.; Moaaz, O.; Santra, S.S.; Noeiaghdam, S.; Sidorov, D. Oscillatory Behavior of Third-Order Quasi-Linear Neutral Differential Equations. Axioms 2021, 10, 346. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Bazighifan, O.; Kumam, P. Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators. Mathematics 2020, 8, 821. [Google Scholar] [CrossRef]
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Candan, T. Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations. Adv. Differ. Equ. 2014, 2014, 35. [Google Scholar] [CrossRef]
- Dzurina, J.; Grace, S.R.; Jadlovska, I. On nonexistence of Kneser solutions of third-order neutral delay differential equations. Appl. Math. Lett. 2019, 88, 193–200. [Google Scholar] [CrossRef]
- Thandapani, E.; Tamilvanan, S.; Jambulingam, E.; Tech, V.T.M. Oscillation of third-order half linear neutral delay differential equations. Int. J. Pure Appl. Math. 2012, 77, 359–368. [Google Scholar]
- Jiang, Y.; Li, T. Asymptotic behavior of a third-order nonlinear neutral delay differential equation. J. Inequal. Appl. 2014, 2014, 512. [Google Scholar] [CrossRef]
- Tunc, E. Oscillatory and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Electron. J. Differ. Equ. 2017, 2017, 127. [Google Scholar] [CrossRef]
- Graef, J.R.; Tunc, E.; Grace, S.R. Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation. Opusc. Math. 2017, 37, 839–852. [Google Scholar] [CrossRef]
- Dzurina, J.; Thandapani, E.; Tamilvanan, S. Oscillation of solutions to third-order half-linear neutral differential equations. Electron. J. Differ. Equ. 2012, 2012, 1–9. [Google Scholar]
- Bazighifan, O.; Ali, A.H.; Mofarreh, F.; Raffoul, Y.N. Extended Approach to the Asymptotic Behavior and Symmetric Solutions of Advanced Differential Equations. Symmetry 2022, 14, 686. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Bazighifan, O. Oscillatory Behavior of Fourth-Order Differential Equations with Neutral Delay. Symmetry 2020, 12, 371. [Google Scholar] [CrossRef]
- Almarri, B.; Janaki, S.; Ganesan, V.; Ali, A.H.; Nonlaopon, K.; Bazighifan, O. Novel Oscillation Theorems and Symmetric Properties of Nonlinear Delay Differential Equations of Fourth-Order with a Middle Term. Symmetry 2022, 14, 585. [Google Scholar] [CrossRef]
- Li, W.; Yu, Y. Oscillatory Behavior of Third-order Nonlinear Differential Equations with a Sublinear Neutral Term. Acta Mathemacae Appl. Sin. Engl. Ser. 2022, 38, 484–496. [Google Scholar] [CrossRef]
- Santra, S.S.; Ghosh, T.; Bazighifan, O. Explicit criteria for the oscillation of second-order differential equations with several sub-linear neutral coefficients. Adv. Differ. Equ. 2020, 2020, 643. [Google Scholar] [CrossRef]
- Qaraad, B.; Bazighifan, O.; Nofal, T.; Ali, A.H. Neutral differential equations with distribution deviating arguments: Oscillation conditions. J. Ocean. Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Abed Meften, G.; Ali, A.H.; Al-Ghafri, K.; Awrejcewicz, J.; Bazighifan, O. Nonlinear Stability and Linear Instability of Double-Diffusive Convection in a Rotating with LTNE Effects and Symmetric Properties: Brinkmann-Forchheimer Model. Symmetry 2022, 14, 565. [Google Scholar]
- Ali, A.H.; Meften, G.A.; Bazighifan, O.; Iqbal, M.; Elaskar, S.; Awrejcewicz, J. A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model. Symmetry 2022, 14, 682. [Google Scholar] [CrossRef]
- Almarri, B.; Ali, A.H.; Al-Ghafri, K.S.; Almutairi, A.; Bazighifan, O.; Awrejcewicz, J. Symmetric and Non-Oscillatory Characteristics of the Neutral Differential Equations Solutions Related to p-Laplacian Operators. Symmetry 2022, 14, 566. [Google Scholar] [CrossRef]
- Almarri, B.; Ali, A.H.; Lopes, A.M.; Bazighifan, O. Nonlinear Differential Equations with Distributed Delay: Some New Oscillatory Solutions. Mathematics 2022, 10, 995. [Google Scholar] [CrossRef]
- Saker, S.H.; Dzurina, J. On the oscillation of certain class of third-order nonlinear delay differential equations. Math. Bohem. 2010, 135, 225–237. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qaraad, B.; Bazighifan, O.; Ali, A.H.; Al-Moneef, A.A.; Alqarni, A.J.; Nonlaopon, K. Oscillation Results of Third-Order Differential Equations with Symmetrical Distributed Arguments. Symmetry 2022, 14, 2038. https://doi.org/10.3390/sym14102038
Qaraad B, Bazighifan O, Ali AH, Al-Moneef AA, Alqarni AJ, Nonlaopon K. Oscillation Results of Third-Order Differential Equations with Symmetrical Distributed Arguments. Symmetry. 2022; 14(10):2038. https://doi.org/10.3390/sym14102038
Chicago/Turabian StyleQaraad, Belgees, Omar Bazighifan, Ali Hasan Ali, Areej A. Al-Moneef, Awatif Jahman Alqarni, and Kamsing Nonlaopon. 2022. "Oscillation Results of Third-Order Differential Equations with Symmetrical Distributed Arguments" Symmetry 14, no. 10: 2038. https://doi.org/10.3390/sym14102038
APA StyleQaraad, B., Bazighifan, O., Ali, A. H., Al-Moneef, A. A., Alqarni, A. J., & Nonlaopon, K. (2022). Oscillation Results of Third-Order Differential Equations with Symmetrical Distributed Arguments. Symmetry, 14(10), 2038. https://doi.org/10.3390/sym14102038