Shadow Cast of Rotating Charged Black Hole with Scalar Q-Hair
Abstract
:1. Introduction
2. Charged Black Holes with Scalar Q-Hair
2.1. Spherically Static Black Hole with Scalar Q-Hair
2.2. Rotating Charged Black Hole with Scalar Q-Hair
3. Null Geodesic and Celestial Coordinates
4. Black Hole Shadow Cast
4.1. Shadow Cast for Non-Rotating Black Hole with Scalar Q-Hair
4.2. Shadow for the Rotating Black Hole with Scalar Q-Hair
5. Closing Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azuly, R. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barret, J.; et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett. 2022, 930, L17. [Google Scholar] [CrossRef]
- Cunha, P.V.P.; Herdeiro, C.A.R. Shadows and strong gravitational lensing: A brief review. Gen. Relativ. Gravit. 2018, 50, 42. [Google Scholar] [CrossRef] [Green Version]
- Perlick, V.; Tsupko, O.Y. Calculating black hole shadows: Review of analytical studies. Phys. Rep. 2022, 947, 1–39. [Google Scholar] [CrossRef]
- Grenzebach, A.; Perlick, V.; Lämmerzahl, C. Photon Regions and Shadows of Kerr-Newman-NUT Black Holes with a Cosmological Constant. Phys. Rev. D 2014, 89, 124004. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E. EHT constraint on the ultralight scalar hair of the M87 supermassive black hole. Universe 2019, 5, 220. [Google Scholar] [CrossRef] [Green Version]
- Bambi, C.; Freese, K.; Vagnozzi, S.; Visinelli, L. Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image. Phys. Rev. D 2019, 100, 044057. [Google Scholar] [CrossRef]
- Wang, H.-M.; Xu, Y.-M.; Wei, S.-W. Shadows of Kerr-like black holes in a modified gravity theory. J. Cosmol. Astropart. Phys. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Obers, N.A.; Yan, H. Observational signatures of near-extremal Kerr-like black holes in a modified gravity theory at the Event Horizon Telescope. Phys. Rev. D 2018, 98, 084063. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Ghosh, S.G.; Wang, A. Shadow cast and deflection of light by charged rotating regular black holes. Phys. Rev. D 2019, 100, 124024. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.G.; Kumar, R.; Islam, S.U. Parameters estimation and strong gravitational lensing of nonsingular Kerr-Sen black holes. J. Cosmol. Astropart. Phys. 2021, 3, 56. [Google Scholar] [CrossRef]
- Jha, S.K.; Rahaman, A. Lorentz violation and noncommutative effect on superradiance scattering off Kerr-like black hole and on the shadow of it. arXiv 2022, arXiv:2111.02817. [Google Scholar]
- Khodadi, M.; Lambiase, G.; Mota, D.F. No-hair theorem in the wake of Event Horizon Telescope. J. Cosmol. Astropart. Phys. 2021, 9, 28. [Google Scholar] [CrossRef]
- Meng, Y.; Kuang, X.-M.; Tang, Z.-Y. Photon regions, shadow observables, and constraints from M87* of a charged rotating black hole. Phys. Rev. D 2022, 106, 064006. [Google Scholar] [CrossRef]
- Kuang, X.-M.; Tang, Z.-Y.; Wang, B.; Wang, A. Constraining a modified gravity theory in strong gravitational lensing and black hole shadow observations. Phys. Rev. D 2022, 106, 064012. [Google Scholar] [CrossRef]
- Kuang, X.-M.; Övgün, A. Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole. Ann. Phys. 2022, 169147. in press. [Google Scholar] [CrossRef]
- Tang, Z.-Y.; Kuang, X.-M.; Wang, B.; Qian, W.-L. The length of a compact extra dimension from shadow. arXiv 2022, arXiv:2206.08608. [Google Scholar]
- Vagnozzi, S.; Roy, R.; Tsai, Y.D.; Visinelli, L. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A*. arXiv 2022, arXiv:2205.07787. [Google Scholar]
- Chen, C.-Y. Testing black hole equatorial reflection symmetry using Sgr A* shadow images. Phys. Rev. D 2022, 106, 044009. [Google Scholar] [CrossRef]
- Chen, Y.; Roy, R.; Vagnozzi, S.; Visinelli, L. Superradiant evolution of the shadow and photon ring of Sgr A☆. Phys. Rev. D 2022, 106, 043021. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Jing, J. Chaotic shadows of black holes: A short review. Commun. Theor. Phys. 2022, 74, 097401. [Google Scholar] [CrossRef]
- Hu, S.; Deng, C.; Li, D.; Wu, X.; Liang, E. Observational signatures of Schwarzschild-MOG black holes in scalar-tensor-vector gravity: Shadows and rings with different accretions. Eur. Phys. J. C 2022, 82, 885. [Google Scholar] [CrossRef]
- Cao, W.; Liu, W.; Wu, X. Integrability of Kerr-Newman spacetime with cloud strings, quintessence and electromagnetic field. Phys. Rev. D 2022, 105, 124039. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Mou, P.-H.; Li, G.-P. The observational shadow features of a renormalization group improved black hole considering spherical accretions. Symmetry 2022, 14, 1959. [Google Scholar] [CrossRef]
- Volkov, M.S.; Galtsov, D.V. NonAbelian Einstein Yang-Mills black holes. JETP Lett. 1989, 50, 346–350. [Google Scholar]
- Bizon, P. Colored black holes. Phys. Rev. Lett. 1990, 64, 2844–2847. [Google Scholar] [CrossRef]
- Greene, B.R.; Mathur, S.D.; O’Neill, C.M. Eluding the no hair conjecture: Black holes in spontaneously broken gauge theories. Phys. Rev. D 1993, 47, 2242–2259. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.-I.; Tachizawa, T.; Torii, T.; Maki, T. Stability of nonAbelian black holes and catastrophe theory. Phys. Rev. Lett. 1994, 72, 450–453. [Google Scholar] [CrossRef] [Green Version]
- Luckock, H.; Moss, I. black hole have skyrmion hair. Phys. Lett. B 1986, 176, 341–345. [Google Scholar] [CrossRef]
- Droz, S.; Heusler, M.; Straumann, N. New black hole solutions with hair. Phys. Lett. B 1991, 268, 371–376. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Exact solutions of Einstein conformal scalar equations. Ann. Phys. 1974, 82, 535–547. [Google Scholar] [CrossRef]
- Kanti, P.; Mavromatos, N.E.; Rizos, J.; Tamvakis, K.; Winstanley, E. Dilatonic black holes in higher curvature string gravity. Phys. Rev. D 1996, 54, 5049–5058. [Google Scholar] [CrossRef] [Green Version]
- Mignemi, S.; Stewart, N.R. Charged black holes in effective string theory. Phys. Rev. D 1993, 47, 5259–5269. [Google Scholar] [CrossRef] [Green Version]
- Torii, T.; Yajima, H.; Maeda, K.-I. Dilatonic black holes with Gauss-Bonnet term. Phys. Rev. D 1997, 55, 739–753. [Google Scholar] [CrossRef] [Green Version]
- Kleihaus, B.; Kunz, J.; Radu, E. Rotating Black Holes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. Lett. 2011, 106, 151104. [Google Scholar] [CrossRef] [Green Version]
- Herdeiro, C.A.R.; Radu, E. Black hole scalarization from the breakdown of scale invariance. Phys. Rev. D 2019, 99, 084039. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, G.; Bakopoulos, A.; Kanti, P. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories. Phys. Rev. Lett. 2018, 120, 131102. [Google Scholar] [CrossRef] [Green Version]
- Doneva, D.D.; Yazadjiev, S.S. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories. Phys. Rev. Lett. 2018, 120, 131103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, H.O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T.P.; Berti, E. Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling. Phys. Rev. Lett. 2018, 120, 131104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brihaye, Y.; Herdeiro, C.; Radu, E. The scalarised Schwarzschild-NUT spacetime. Phys. Lett. B 2019, 788, 295–301. [Google Scholar] [CrossRef]
- Herdeiro, C.A.R.; Radu, E.; Sanchis-Gual, N.; Font, J.A. Spontaneous Scalarization of Charged Black Holes. Phys. Rev. Lett. 2018, 121, 101102. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, T.; Psaltis, D. Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum: II. Black-Hole Images. Astrophys. J. 2010, 718, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Johannsen, T.; Loeb, A.; Psaltis, D. Testing the No-Hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J. 2014, 784, 7. [Google Scholar] [CrossRef]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E.; Runarsson, H.F. Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 2015, 115, 211102. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E.; Runarsson, H.F. Shadows of Kerr black holes with and without scalar hair. Int. J. Mod. Phys. D 2016, 25, 1641021. [Google Scholar] [CrossRef] [Green Version]
- Vincent, F.H.; Gourgoulhon, E.; Herdeiro, C.; Radu, E. Astrophysical imaging of Kerr black holes with scalar hair. Phys. Rev. D 2016, 94, 084045. [Google Scholar] [CrossRef] [Green Version]
- Khodadi, M.; Allahyari, A.; Vagnozzi, S.; Mota, D.F. Black holes with scalar hair in light of the Event Horizon Telescope. J. Cosmol. Astropart. Phys. 2020, 9, 26. [Google Scholar] [CrossRef]
- Afrin, M.; Kumar, R.; Ghosh, S.G. Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87*. Mon. Not. R. Astron. Soc. 2021, 504, 5927–5940. [Google Scholar] [CrossRef]
- Afrin, M.; Ghosh, S.G. Testing Horndeski gravity from EHT observational results of rotating black holes. Astrophys. J. 2022, 932, 51. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, P.; Wu, H.; Yang, H. Photon ring and observational appearance of a hairy black hole. Phys. Rev. D 2021, 104, 044049. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, P.; Wu, H.; Yang, H. Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D 2021, 104, 024003. [Google Scholar] [CrossRef]
- Herdeiro, C.A.R.; Radu, E. Spherical electro-vacuum black holes with resonant, scalar Q-hair. Eur. Phys. J. C 2020, 80, 390. [Google Scholar] [CrossRef]
- Hong, J.-P.; Suzuki, M.; Yamada, M. Spherically Symmetric Scalar Hair for Charged Black Holes. Phys. Rev. Lett. 2020, 125, 111104. [Google Scholar] [CrossRef]
- Mai, Z.-F.; Yang, R.-Q. Stability analysis of a charged black hole with a nonlinear complex scalar field. Phys. Rev. D 2021, 104, 044008. [Google Scholar] [CrossRef]
- Brihaye, Y.; Cônsole, F.; Hartmann, B. Inflation inside non-topological defects and scalar black holes. Symmetry 2020, 13, 2. [Google Scholar] [CrossRef]
- Dias, O.J.C.; Horowitz, G.T.; Santos, J.E. Inside an asymptotically flat hairy black hole. J. High Energy Phys. 2021, 12, 179. [Google Scholar] [CrossRef]
- Zhang, S.-J. Spherical black holes with minimally coupled scalar cloud/hair in Einstein–Born–Infeld gravity. Eur. Phys. J. C 2022, 82, 501. [Google Scholar] [CrossRef]
- Brihaye, Y.; Herdeiro, C.; Radu, E. D=5 static, charged black holes, strings and rings with resonant, scalar Q-hair. arXiv 2022, arXiv:2207.13114. [Google Scholar] [CrossRef]
- Devi, S.; Chakrabarti, S.; Majhi, B.R. Shadow of quantum extended Kruskal black hole and its super-radiance property. arXiv 2021, arXiv:2105.11847. [Google Scholar]
- Azreg-Ainou, M. Regular and conformal regular cores for static and rotating solutions. Phys. Lett. B 2014, 730, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Jusufi, K.; Azreg-Aïnou, M.; Jamil, M.; Wei, S.-W.; Wu, Q.; Wang, A. Quasinormal modes, quasiperiodic oscillations, and the shadow of rotating regular black holes in nonminimally coupled Einstein-Yang-Mills theory. Phys. Rev. D 2021, 103, 024013. [Google Scholar] [CrossRef]
- Bambhaniya, P.; Verma, J.S.; Dey, D.; Joshi, P.S.; Joshi, A.B. Lense-Thirring effect and precession of timelike geodesics in slowly rotating black hole and naked singularity spacetimes. arXiv 2021, arXiv:2109.11137. [Google Scholar]
- Grandclement, P.; Novak, J. Spectral methods for numerical relativity. Living Rev. Relativ. 2009, 12, 1. [Google Scholar] [CrossRef]
- Grieninger, S. Holographic Quenches and Anomalous Transport. Master’s Thesis, Friedrich Schiller University Jena, Institute for Theoretical Physics, Jena, Germany, 2016. [Google Scholar]
- Andrade, T. Holographic Lattices and Numerical Techniques. arXiv 2017, arXiv:1712.00548. [Google Scholar]
- Flory, M.; Grieninger, S.; Morales-Tejera, S. Critical and near-critical relaxation of holographic superfluids. arXiv 2022, arXiv:2209.09251. [Google Scholar]
- Donos, A.; Gauntlett, J.P. Holographic Q-lattices. J. High Energy Phys. 2014, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.; Liu, P.; Wu, J.-P.; Wu, M.-H. Holographic superconductor on a novel insulator. Chin. Phys. C 2018, 42, 013106. [Google Scholar] [CrossRef]
- Ling, Y.; Liu, P.; Wu, M.-H. Holographic superconductor induced by charge density waves. Phys. Rev. D 2020, 102, 126013. [Google Scholar] [CrossRef]
- Ling, Y.; Wu, M.-H. Holographic striped superconductor. J. High Energy Phys. 2021, 3, 260. [Google Scholar] [CrossRef]
- Carter, B. Global structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. I. Schwarzschild Black Holes. Astrophys. J. 2021, 907, 66. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. II. Reissner–Nordström Black Holes. Astrophys. J. 2021, 909, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. III. Reissner–Nordström-(anti)-de Sitter Black Holes. Astrophys. J. Suppl. 2021, 254, 8. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Sun, W.; Liu, F. Construction of Explicit Symplectic Integrators in General Relativity. IV. Kerr Black Holes. Astrophys. J. 2021, 914, 63. [Google Scholar] [CrossRef]
- Luo, J.; Wu, X.; Huang, G.; Liu, F. Explicit Symplectic-like Integrators With Midpoint Permutations for Spinning Compact Binaries. Astrophys. J. 2017, 834, 64. [Google Scholar] [CrossRef]
- Pan, G.; Wu, X.; Liang, E. Extended phase-space symplectic-like integrators for coherent post-Newtonian Euler-Lagrange equations. Phys. Rev. D 2021, 104, 044055. [Google Scholar] [CrossRef]
- Zhong, S.-Y.; Wu, X.; Liu, S.-Q.; Deng, X.-F. Global symplectic structure-preserving integrators for spinning compact binaries. Phys. Rev. D 2010, 82, 124040. [Google Scholar] [CrossRef]
- Mei, L.; Wu, X.; Liu, F. On preference of Yoshida construction over Forest-Ruth fourth-order symplectic algorithm. Eur. Phys. J. C 2013, 73, 2413. [Google Scholar] [CrossRef]
- Bambi, C. Black Holes: A Laboratory for Testing Strong Gravity; Springer: Singapore, 2017. [Google Scholar]
- Cunningham, C.T.; Bardeen, J.M. The optical appearance of a star orbiting an extreme Kerr black hole. Astrophy. J. Lett. 1972, 173, L137. [Google Scholar] [CrossRef]
- Abdujabbarov, A.; Amir, M.; Ahmedov, B.; Ghosh, S.G. Shadow of rotating regular black holes. Phys. Rev. D 2016, 93, 104004. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, A.F. Constraints on a charge in the Reissner-Nordström metric for the black hole at the Galactic Center. Phys. Rev. D 2014, 90, 062007. [Google Scholar] [CrossRef] [Green Version]
- Hioki, K.; Maeda, K.-I. Measurement of the Kerr Spin Parameter by Observation of a Compact Object’s Shadow. Phys. Rev. D 2009, 80, 024042. [Google Scholar] [CrossRef]
q | 0.08 | 0.077 | 0.075 |
3.7703 | 3.5507 | 3.1894 | |
0.0116 | 0.01490 | 0.0213 |
0.068 | 0.054 | 0.048 | |
3.7703 | 3.8356 | 3.9230 | |
0.0116 | 0.0062 | 0.0039 |
3.6526 | 3.7703 | 3.8657 | |
0.0127 | 0.0116 | 0.0106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.-H.; Guo, H.; Kuang, X.-M. Shadow Cast of Rotating Charged Black Hole with Scalar Q-Hair. Symmetry 2022, 14, 2237. https://doi.org/10.3390/sym14112237
Wu M-H, Guo H, Kuang X-M. Shadow Cast of Rotating Charged Black Hole with Scalar Q-Hair. Symmetry. 2022; 14(11):2237. https://doi.org/10.3390/sym14112237
Chicago/Turabian StyleWu, Meng-He, Hong Guo, and Xiao-Mei Kuang. 2022. "Shadow Cast of Rotating Charged Black Hole with Scalar Q-Hair" Symmetry 14, no. 11: 2237. https://doi.org/10.3390/sym14112237
APA StyleWu, M. -H., Guo, H., & Kuang, X. -M. (2022). Shadow Cast of Rotating Charged Black Hole with Scalar Q-Hair. Symmetry, 14(11), 2237. https://doi.org/10.3390/sym14112237