Next Article in Journal
Rogue Waves Generator and Chaotic and Fractal Behavior of the Maccari System with a Resonant Parametric Forcing
Previous Article in Journal
SPM: Sparse Persistent Memory Attention-Based Model for Network Traffic Prediction
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives

1
Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2
College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
3
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
4
School of Mathematical and Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(11), 2320; https://doi.org/10.3390/sym14112320
Submission received: 14 October 2022 / Revised: 30 October 2022 / Accepted: 1 November 2022 / Published: 4 November 2022
(This article belongs to the Section Mathematics)

Abstract

:
In this paper, under some super- and sub-linear growth conditions, we study the existence of positive solutions for a high-order Riemann–Liouville type fractional integral boundary value problem involving fractional derivatives. Our analysis methods are based on the fixed point index and nonsymmetric property of the Green function. Additionally, we provide some valid examples to illustrate our main results.

1. Introduction

In this paper, we investigate the existence of positive solutions for the following high-order Riemann–Liouville type fractional integral boundary value problem involving fractional derivatives:
D 0 + α u ( t ) + f t , u ( t ) , D 0 + β 1 u ( t ) , , D 0 + β n 1 u ( t ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 0 ) = = u ( n 2 ) ( 0 ) = 0 , D 0 + β u ( 1 ) = 0 1 D 0 + β n 1 u ( t ) d A ( t ) ,
where n 1 < α n , i 1 < β i i ( i = 1 , 2 , , n 1 ) , α β n 1 > α β > 1 and f , A satisfy the conditions:
Hypothesis 1 (H1).
f : [ 0 , 1 ] × R + n R is continuous, and there is a M > 0 , such that
f ( t , x n , x n 1 , , x 1 ) M , t [ 0 , 1 ] , x i R + , i = 1 , 2 , , n , R + : = [ 0 , + ) ,
Hypothesis 2 (H2).
A : [ 0 , 1 ] R + is a function of bounded variation and 0 1 t α β n 1 1 d A ( t ) 0 , Γ ( α β n 1 ) Γ ( α β ) .
Recently, useful properties of fractional calculus were discovered in many scientific engineering phenomena which has motivated researchers to use this theory to analyze and apply them in various fields. We refer the reader to system modeling, controller design, and biomedical and signal processing fields. We also note that fractional differential equations have received much attention and there are many papers studying various kinds of fractional boundary value problems using methods in non-linear analysis, see, for example, Refs. [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] and the references cited therein. In [1], the authors used the method of mixed monotone operators to study unique positive solutions for the fractional differential system
D 0 + α χ 1 ( t ) = f t , χ 1 ( t ) , D 0 + β χ 1 ( t ) , χ 2 ( t ) , t ( 0 , 1 ) , D 0 + γ χ 2 ( t ) = g ( t , χ 1 ( t ) ) , t ( 0 , 1 ) , D 0 + β χ 1 ( 0 ) = 0 , D 0 + μ χ 1 ( 1 ) = j = 1 p 2 a j D 0 + μ χ 1 ξ j , χ 2 ( 0 ) = 0 , D 0 + v χ 2 ( 1 ) = j = 1 p 2 b j D 0 + v χ 2 ξ j ,
where D 0 + σ ( σ = α , β , γ , μ , v ) is the Riemann–Liouville derivative and in [2], the authors studied the solvability for the fractional differential system
D 0 + α χ 1 ( t ) + λ f t , χ 1 ( t ) , D 0 + β χ 1 ( t ) , χ 2 ( t ) = 0 , D 0 + γ χ 2 ( t ) + λ g ( t , χ 1 ( t ) ) = 0 , 0 < t < 1 , D 0 + β χ 1 ( 0 ) = D 0 + β + 1 χ 1 ( 0 ) = 0 , D 0 + β χ 1 ( 1 ) = 0 1 D 0 + β χ 1 ( s ) d A ( s ) , χ 2 ( 0 ) = χ 2 ( 0 ) = 0 , χ 2 ( 1 ) = 0 1 χ 2 ( s ) d B ( s ) ,
where D 0 + α , D 0 + β , D 0 + γ are the Riemann-Liouville derivatives, f : ( 0 , 1 ) × R + 3 R , g : ( 0 , 1 ) × R + R are two semi-positone functions, and satisfy the following super-linear or sub-linear conditions:
(HZ) 1 There exists M > 0 such that lim sup ω 0 + max t [ 0 , 1 ] g ( t , ω ) ω < M (sub-linear growth condition);
(HZ) 2 There exists [ a , b ] ( 0 , 1 ) , such that lim ω + min t [ a , b ] g ( t , ω ) ω = + , lim ω 3 + min t [ a , b ] ω 1 , ω 2 0 f t , ω 1 , ω 2 , ω 3 ω 3 = + ( superlinear growth condition ) .
In [3], the authors investigated the system of Riemann–Liouville fractional differential equations
D 0 + α 1 D 0 + β 1 χ 1 ( t ) + λ f ( t , χ 1 ( t ) , χ 2 ( t ) ) = 0 , t ( 0 , 1 ) , D 0 + α 2 D 0 + β 2 χ 2 ( t ) + μ g ( t , χ 1 ( t ) , χ 2 ( t ) ) = 0 , t ( 0 , 1 ) , χ 1 ( j ) ( 0 ) = 0 , j = 0 , , n 2 ; D 0 + β 1 χ 1 ( 0 ) = 0 , D 0 + γ 0 χ 1 ( 1 ) = i = 1 p 0 1 D 0 + γ i χ 1 ( τ ) d H i ( τ ) , χ 2 ( j ) ( 0 ) = 0 , j = 0 , , m 2 ; D 0 + β 2 χ 2 ( 0 ) = 0 , D 0 + δ 0 χ 2 ( 1 ) = i = 1 q 0 1 D 0 + δ i χ 2 ( τ ) d K i ( τ ) ,
where f , g are sign-changing singular non-linearities and satisfy the following growth condition:
(HZ) 3 There exist 0 < σ 1 < σ 2 < 1 , such that
lim ω 1 + ω 2 + min t σ 1 , σ 2 f ( t , ω 1 , ω 2 ) ω 1 + ω 2 = or lim ω 1 + ω 2 + min t σ 1 , σ 2 g ( t , ω 1 , ω 2 ) ω 1 + ω 2 = .
It is widely known that certain conditions involving the eigenvalues of relevant linear operators play an important role in the study of fractional boundary value problems, see, for example, [4,5,6,7,8,9]. In [4], the authors used fixed point index theory to study positive solutions for the fractional integral boundary value problem
D 0 + α χ ( t ) + h ( t ) f ( t , χ ( t ) ) = 0 , 0 < t < 1 , χ ( 0 ) = χ ( 0 ) = χ ( 0 ) = 0 , χ ( 1 ) = λ 0 η χ ( s ) d s ,
where f C ( [ 0 , 1 ] × R + , R + ) satisfies the following growth conditions:
(HZ) 4 lim inf ζ 0 + f ( t , ζ ) ζ > λ 1 and lim sup ζ + f ( t , ζ ) ζ < λ 1 , uniformly on t [ 0 , 1 ] ,
(HZ) 5 lim sup ζ 0 + f ( t , ζ ) ζ < λ 1 and lim inf ζ + f ( t , ζ ) ζ > λ 1 , uniformly on t [ 0 , 1 ] , where λ 1 > 0 is the first eigenvalue of the operator L denoted by ( L ζ ) ( t ) = 0 1 G ( t , s ) h ( s ) ζ ( s ) d s , and G is the Green’s function associated with (2). In [5], the authors generalized the methods in [4], and studied the following higher order fractional differential equation with integral boundary conditions
D 0 + α χ ( t ) = f t , χ ( t ) , χ ( t ) , , χ ( n 2 ) ( t ) , 0 < t < 1 , χ ( 0 ) = χ ( 0 ) = = χ ( n 2 ) ( 0 ) = 0 , χ ( n 2 ) ( 1 ) = λ χ ( n 2 ) ,
where λ [ χ ] = 0 1 χ ( t ) d A ( t ) , and f C ( [ 0 , 1 ] × ( R + ) n 1 , R + ) satisfies the following growth conditions:
(HZ) 6 lim inf ζ 1 0 ζ n 1 0 f t , ζ 1 , , ζ n 1 ζ 1 + + ζ n 1 > λ 1 , lim sup ζ 1 + + ζ n 1 + ζ n 1 + f t , ζ 1 , , ζ n 1 ζ n 1 < λ 1 , uniformly on t [ 0 , 1 ] ,
(HZ) 7 lim inf ζ 1 0 ζ n 1 0 f t , ζ 1 , , ζ n 1 ζ n 1 < λ 1 , lim sup ζ 1 + + ζ n 1 + f t , ζ 1 , , ζ n 1 ζ 1 + + ζ n 1 > λ 1 , uniformly on t [ 0 , 1 ] , where λ 1 > 0 is the first eigenvalue of the operator L denoted by ( L ζ ) ( t ) = 0 1 H ( t , s ) ζ ( s ) d s , and H is the Green’s function associated with (3).
Comparing these results there seems to be no real improvement in the stategy for these problems. However, in this paper we consider a different linear operator (see the operator B μ 1 , μ 2 , , μ n in Section 2), and discuss the effects of integral boundary conditions on its eigenvalues involving non-symmetric Green function. Moreover, the problem considered here involves fractional derivatives and a semi-positone non-linearity. As a result, our methods and results are more general than those in the aforementioned works.

2. Preliminaries

In this section, we first provide some basic material for Riemann–Liouville fractional calculus, for details see [21,22].
Definition 1.
The Riemann–Liouville fractional derivative of order α > 0 of a function φ : ( 0 , + ) R is given by
D 0 + α φ ( t ) = 1 Γ ( n α ) d d t n 0 t ( t s ) n α 1 φ ( s ) d s ,
where n = [ α ] + 1 , [ α ] denotes the integer part of number α, provided that the right-hand side is pointwise defined on ( 0 , + ) .
Definition 2.
The Riemann–Liouville fractional integral of order α > 0 of a function φ : ( 0 , + ) R is given by
I 0 + α φ ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 φ ( s ) d s ,
provided that the right-hand side is pointwise defined on ( 0 , + ) .
Lemma 1.
Assume that φ C ( 0 , 1 ) L 1 ( 0 , 1 ) with a fractional derivative of order α > 0 that belongs to C ( 0 , 1 ) L 1 ( 0 , 1 ) . Then
I 0 + α D 0 + α φ ( t ) = φ ( t ) + C 1 t α 1 + C 2 t α 2 + + C N t α N ,
for some C i R ( i = 1 , 2 , , N ) , where N = [ α ] + 1 .
Let v ( t ) = D 0 + β n 1 u ( t ) in (1). Then, we can obtain the following lemma.
Lemma 2 
(see [15,16]). Problem (1) can be transformed into the following boundary value problem
D 0 + α β n 1 v ( t ) + f t , I 0 + β n 1 v ( t ) , I 0 + β n 1 β 1 v ( t ) , , v ( t ) = 0 , t ( 0 , 1 ) , I 0 + β n 1 n + 2 v ( 0 ) = 0 , D 0 + β β n 1 v ( 1 ) = 0 1 v ( t ) d A ( t ) .
Furthermore, (4) is equivalent to the following integral equation
v ( t ) = 0 1 K ( t , s ) f s , I 0 + β n 1 v ( s ) , I 0 + β n 1 β 1 v ( s ) , , v ( s ) d s + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) ,
where
K ( t , s ) = 1 Γ α β n 1 t α β n 1 1 ( 1 s ) α β 1 ( t s ) α β n 1 1 , 0 s t 1 , t α β n 1 1 ( 1 s ) α β 1 , 0 t s 1 .
Proof. 
Let v ( t ) = D 0 + β n 1 u ( t ) . Then, from Lemma 4 of [15], Lemma 2.3 of [16], we have
u ( t ) = I 0 + β n 1 v ( t ) , u ( n 2 ) ( t ) = I 0 + β n 1 n + 2 v ( t ) , D 0 + α u ( t ) = D 0 + α β n 1 v ( t ) , D 0 + β u ( t ) = D 0 + β β n 1 v ( t ) ,
and
D 0 + β i u ( t ) = I 0 + β n 1 β i v ( t ) , i = 1 , 2 , , n 2 .
Therefore, we easily obtain (4).
Let y ( s ) = f s , I 0 + β n 1 v ( s ) , I 0 + β n 1 β 1 v ( s ) , , v ( s ) , and we have
v ( t ) = I 0 + α β n 1 y ( t ) + C 1 t α β n 1 1 , and D 0 + β β n 1 v ( t ) = 1 Γ ( α β ) 0 t ( t s ) α β 1 y ( s ) d s + C 1 Γ α β n 1 Γ ( α β ) t α β 1 ,
where C 1 R . Hence, we obtain
D 0 + β β n 1 v ( 1 ) = 1 Γ ( α β ) 0 1 ( 1 s ) α β 1 y ( s ) d s + C 1 Γ α β n 1 Γ ( α β ) = 0 1 v ( t ) d A ( t ) .
Solving this equation, we have
C 1 = Γ ( α β ) Γ α β n 1 0 1 v ( t ) d A ( t ) + 1 Γ α β n 1 0 1 ( 1 s ) α β 1 y ( s ) d s
and then
v ( t ) = Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) + 1 Γ α β n 1 0 1 t α β n 1 1 ( 1 s ) α β 1 y ( s ) d s 1 Γ ( α β n 1 ) 0 t ( t s ) α β n 1 1 y ( s ) d s = 0 1 K ( t , s ) y ( s ) d s + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) .
This completes the proof. □
Remark 1.
Integrate (6) over [ 0 , 1 ] and use (H2) to obtain
0 1 v ( t ) d A ( t ) = 0 1 0 1 K ( t , s ) y ( s ) d s d A ( t ) + Γ ( α β ) Γ α β n 1 0 1 t α β n 1 1 d A ( t ) 0 1 v ( t ) d A ( t ) ,
and
0 1 v ( t ) d A ( t ) = 1 1 Γ ( α β ) Γ α β n 1 0 1 t α β n 1 1 d A ( t ) 0 1 0 1 K ( t , s ) y ( s ) d s d A ( t ) .
Therefore, we have
v ( t ) = 0 1 K ( t , s ) y ( s ) d s + t α β n 1 1 Γ ( α β ) Γ α β n 1 Γ ( α β ) 0 1 t α β n 1 1 d A ( t ) 0 1 0 1 K ( t , s ) y ( s ) d s d A ( t ) = 0 1 G ( t , s ) y ( s ) d s ,
where
G ( t , s ) = K ( t , s ) + t α β n 1 1 Γ ( α β ) Γ α β n 1 Γ ( α β ) 0 1 t α β n 1 1 d A ( t ) 0 1 K ( t , s ) d A ( t ) , t , s [ 0 , 1 ] .
Note that the function G appears in Lemma 2.3 of [16] ( l ( t ) 1 ).
Lemma 3 (see [15,16]).
The function K has the properties:
(i)
K C ( [ 0 , 1 ] × [ 0 , 1 ] , R + ) and K ( t , s ) > 0 for t , s ( 0 , 1 ) ,
(ii)
t α β n 1 1 K ( 1 , s ) K ( t , s ) K ( 1 , s ) , t , s [ 0 , 1 ] .
Let E = C [ 0 , 1 ] with the norm φ = max 0 t 1 | φ ( t ) | . Define a cone P by P = { φ E : φ ( t ) 0 , t [ 0 , 1 ] } . Then, E is a Banach space, and P a closed cone on E. From ([26], p. 188), we know that the conjugate space of E, denoted by E * , is V = V [ 0 , 1 ] , i.e., E * = V , where V : = { z : z has bounded variation on [ 0 , 1 ] }. Moreover, the bounded linear functional on E can be given by the Riemann–Stieltjes integral
z ( φ ) : = 0 1 φ ( t ) d z ( t ) , φ E , z E * .
By ([27], p. 125), we have
P * : = { z E * : z ( φ ) 0 , φ P }
is the dual cone of P. From (7), we have
z ( φ ) = 0 1 φ ( t ) d z ( t ) = lim λ 0 i = 1 n φ ( ξ i ) [ z ( t i ) z ( t i 1 ) ] 0 ,
where 0 = t 0 < t 1 < < t n 1 < t n = 1 , λ = max 1 i n ( t i t i 1 ) , ξ i [ t i 1 , t i ] , i = 1 , 2 , , n . From φ P ( φ ( ξ i ) 0 ) , for all division t i (8) holds, we only need z ( t i ) z ( t i 1 ) 0 for i = 1 , 2 , , n . Therefore, the dual cone of P can also be expressed by
P * : = z E * : z is non-decreasing on [ 0 , 1 ] .
Let μ i 0 ( i = 1 , 2 , , n ) with i = 1 n μ i 2 0 , and
L μ 1 , μ 2 , , μ n v ( t ) = 0 1 K μ 1 , μ 2 , , μ n ( t , τ ) v ( τ ) d τ , v E ,
where K μ 1 , μ 2 , , μ n ( t , τ ) = μ n K n ( t , τ ) + μ n 1 K n 1 ( t , τ ) + + μ 2 K 2 ( t , τ ) + μ 1 K ( t , τ ) , ( t , τ ) [ 0 , 1 ] × [ 0 , 1 ] , and K i ( i = 2 , , n ) are
K 2 ( t , τ ) K 3 ( t , τ ) K n 1 ( t , τ ) K n ( t , τ ) = 1 Γ β n 1 β n 2 τ 1 K ( t , s ) ( s τ ) β n 1 β n 2 1 d s 1 Γ β n 1 β n 3 τ 1 K ( t , s ) ( s τ ) β n 1 β n 3 1 d s 1 Γ β n 1 β 1 τ 1 K ( t , s ) ( s τ ) β n 1 β 1 1 d s 1 Γ β n 1 τ 1 K ( t , s ) ( s τ ) β n 1 1 d s .
Let r L μ 1 , μ 2 , , μ n denote the spectral radius of L μ 1 , μ 2 , , μ n , and we can obtain the following lemma.
Lemma 4.
r L μ 1 , μ 2 , , μ n > 0 .
Proof. 
From Lemma 3(ii) and (9), we have
t α β n 1 1 K i ( 1 , τ ) K i ( t , τ ) K i ( 1 , τ ) , t , τ [ 0 , 1 ] , i = 2 , 3 , , n .
This implies that
t α β n 1 1 K μ 1 , μ 2 , , μ n ( 1 , τ ) K μ 1 , μ 2 , , μ n ( t , τ ) K μ 1 , μ 2 , , μ n ( 1 , τ ) , t , τ [ 0 , 1 ] .
Consequently, for all m N + , we have
L μ 1 , μ 2 , , μ n m max t [ 0 , 1 ] 0 1 0 1 0 1 m K μ 1 , μ 2 , , μ n ( t , s 1 ) K μ 1 , μ 2 , , μ n ( s 1 , s 2 ) · · K μ 1 , μ 2 , , μ n ( s m 1 , s m ) d s 1 d s 2 d s m max t [ 0 , 1 ] t α β n 1 1 0 1 0 1 0 1 m K μ 1 , μ 2 , , μ n ( 1 , s 1 ) s 1 α β n 1 1 K μ 1 , μ 2 , , μ n ( 1 , s 2 ) · · s m 1 α β n 1 1 K μ 1 , μ 2 , , μ n ( 1 , s m ) d s 1 d s 2 d s m = 0 1 K μ 1 , μ 2 , , μ n ( 1 , s ) s α β n 1 1 d s m 1 0 1 K μ 1 , μ 2 , , μ n ( 1 , s ) d s .
By Gelfand’s theorem, we have
r ( L μ 1 , μ 2 , , μ n ) = lim m L μ 1 , μ 2 , , μ n m m 0 1 K μ 1 , μ 2 , , μ n ( 1 , s ) s α β n 1 1 d s > 0 .
This completes the proof. □
We denote an operator B μ 1 , μ 2 , , μ n as follows
B μ 1 , μ 2 , , μ n v ( t ) = 0 1 K μ 1 , μ 2 , , μ n ( t , τ ) v ( τ ) d τ + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) , v E .
Now, B μ 1 , μ 2 , , μ n : P P is a completely continuous, linear, positive operator. Note that the spectral radius r ( B μ 1 , μ 2 , , μ n ) r ( L μ 1 , μ 2 , , μ n ) > 0 . Now, the well-known Krein–Rutman theorem [28] guarantees that there exist two functions φ μ 1 , μ 2 , , μ n P \ { 0 } and ψ μ 1 , μ 2 , , μ n P * \ { 0 } with ψ μ 1 , μ 2 , , μ n ( 1 ) = 1 and
B μ 1 , μ 2 , , μ n φ μ 1 , μ 2 , , μ n = r B μ 1 , μ 2 , , μ n φ μ 1 , μ 2 , , μ n , B μ 1 , μ 2 , , μ n * ψ μ 1 , μ 2 , , μ n = r B μ 1 , μ 2 , , μ n ψ μ 1 , μ 2 , , μ n ,
where B μ 1 , μ 2 , , μ n * : E * E * is the conjugate operator of B μ 1 , μ 2 , , μ n , denoted by
B ξ * v ( t ) : = 0 t d s 0 1 K μ 1 , μ 2 , , μ n ( τ , s ) d v ( τ ) + Γ ( α β ) Γ α β n 1 A ( t ) 0 1 τ α β n 1 1 d v ( τ ) .
Remark 2.
From Lemma 4 and the definition of operator B μ 1 , μ 2 , , μ n , we have
0 1 K μ 1 , μ 2 , , μ n ( 1 , s ) s α β n 1 1 d s r ( L μ 1 , μ 2 , , μ n ) r ( B μ 1 , μ 2 , , μ n ) 0 1 K μ 1 , μ 2 , , μ n ( 1 , s ) d s + Γ ( α β ) Γ α β n 1 0 1 d A ( t ) .
Define a modified function [ · ] * for any z C [ 0 , 1 ] by
[ z ( t ) ] * = z ( t ) , z ( t ) 0 , 0 , z ( t ) < 0 ,
and consider the following boundary value problem
D 0 + α β n 1 v ( t ) + f t , I 0 + β n 1 [ v ( t ) ω ( t ) ] * , I 0 + β n 1 β 1 [ v ( t ) ω ( t ) ] * , , [ v ( t ) ω ( t ) ] * + M = 0 , t ( 0 , 1 ) , I 0 + β n 1 n + 2 v ( 0 ) = 0 , D 0 + β β n 1 v ( 1 ) = 0 1 v ( t ) d A ( t ) ,
where
ω ( t ) = M 0 1 G ( t , s ) d s .
From Lemma 2.6 in [13], we have the following lemma.
Lemma 5.
Suppose that v is a solution of (12) with v ( t ) ω ( t ) , t [ 0 , 1 ] . Then, v ω is a positive solution of (4). Consequently, u ( t ) = I 0 + β n 1 [ v ( t ) w ( t ) ] is also a positive solution of (1).
Proof. 
Since v is a solution of (12) with v ( t ) ω ( t ) , t [ 0 , 1 ] , then we have
D 0 + α β n 1 v ( t ) + f t , I 0 + β n 1 [ v ( t ) ω ( t ) ] , I 0 + β n 1 β 1 [ v ( t ) ω ( t ) ] , , [ v ( t ) ω ( t ) ] + M = 0 , t ( 0 , 1 ) , I 0 + β n 1 n + 2 v ( 0 ) = 0 , D 0 + β β n 1 v ( 1 ) = 0 1 v ( t ) d A ( t ) .
From (13), Lemma 2 and Remark 1 we have
D 0 + α β n 1 ω ( t ) + M = 0 , t ( 0 , 1 ) , I 0 + β n 1 n + 2 ω ( 0 ) = 0 , D 0 + β β n 1 ω ( 1 ) = 0 1 ω ( t ) d A ( t ) .
Combining with (14)–(15), we have
D 0 + α β n 1 [ v ( t ) ω ( t ) ] + f t , I 0 + β n 1 [ v ( t ) ω ( t ) ] , I 0 + β n 1 β 1 [ v ( t ) ω ( t ) ] , , [ v ( t ) ω ( t ) ] = 0 , t ( 0 , 1 ) , I 0 + β n 1 n + 2 [ v ( 0 ) ω ( 0 ) ] = 0 , D 0 + β β n 1 [ v ( 1 ) ω ( 1 ) ] = 0 1 [ v ( t ) ω ( t ) ] d A ( t ) .
This implies that v w is a positive solution of (4). From the relation between (1) and (4), we obtain u ( t ) = I 0 + β n 1 [ v ( t ) w ( t ) ] is a positive solution of (1). This completes the proof. □
From Lemma 5, we define an operator T : P P as
( T v ) ( t ) : = 0 1 K ( t , s ) f s , I 0 + β n 1 [ v ( s ) ω ( s ) ] * , I 0 + β n 1 β 1 [ v ( s ) ω ( s ) ] * , , [ v ( s ) ω ( s ) ] * + M d s + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) = 0 1 G ( t , s ) f s , I 0 + β n 1 [ v ( s ) ω ( s ) ] * , I 0 + β n 1 β 1 [ v ( s ) ω ( s ) ] * , , [ v ( s ) ω ( s ) ] * + M d s .
If there exists v * P \ { 0 } , such that T v * = v * with v * ( t ) ω ( t ) , t [ 0 , 1 ] , then v * ω is a positive solution of (4), and u * ( t ) = I 0 + β n 1 [ v * ( t ) ω ( t ) ] is a positive solution for (1).
Lemma 6.
Let P 0 = { v P : v ( t ) t α β n 1 1 v , t [ 0 , 1 ] } . Then T ( P ) P 0 .
From Lemma 3(ii), we can obtain this lemma, so we omit its proof.
Note if T v * = v * and
v * P 0 then
v * ( t ) ω ( t ) t α β n 1 1 v * M 0 1 G ( t , s ) d s t α β n 1 1 v * M 0 1 ( 1 s ) α β 1 Γ α β n 1 + 0 1 K ( t , s ) d A ( t ) Γ ( α β ) Γ α β n 1 Γ ( α β ) 0 1 t α β n 1 1 d A ( t ) d s .
Therefore, if v * M 0 1 ( 1 s ) α β 1 Γ α β n 1 + 0 1 K ( t , s ) d A ( t ) Γ ( α β ) Γ α β n 1 Γ ( α β ) 0 1 t α β n 1 1 d A ( t ) d s : = Θ M , K , A , we have v * ( t ) ω ( t ) , t [ 0 , 1 ] . As a result, we seek the fixed point of T, with the norm greater than Θ M , K , A .
Lemma 7 
(see [29]). Let Ω E be a bounded open set and A : Ω ¯ P P a continuous, compact operator. If there exists u 0 P \ { 0 } , such that u A u μ u 0 for all μ 0 and u Ω P , then i ( A , Ω P , P ) = 0 , where i denotes the fixed point index on P.
Lemma 8 
(see [29]). Let Ω E be a bounded open set with 0 Ω . Suppose that A : Ω ¯ P P is a continuous, compact operator. If u μ A u for all u Ω P and 0 μ 1 , then i ( A , Ω P , P ) = 1 .

3. Main Results

In this section, we first list our assumptions.
Hypothesis 3 (H3).
There exist γ i with i = 1 n γ i 2 0 , such that r ( B γ 1 , γ 2 , , γ n ) > 1 and
lim inf γ 1 x 1 + γ 2 x 2 + + γ n x n + f ( t , x n , x n 1 , , x 1 ) + M γ 1 x 1 + γ 2 x 2 + + γ n x n 1 , uniformly on t [ 0 , 1 ] .
Hypothesis 4 (H4).
There exist Q : [ 0 , 1 ] R + with 0 1 G ( 1 , t ) Q ( t ) d t < Θ M , K , A , such that
f t , x n , x n 1 , , x 1 + M Q ( t ) , t [ 0 , 1 ] , x i 0 , Θ M , K , A , i = 1 , 2 , , n .
Hypothesis 5 (H5).
There exist δ i with i = 1 n δ i 2 0 , such that r ( B δ 1 , δ 2 , , δ n ) < 1 and
lim sup δ 1 x 1 + δ 2 x 2 + + δ n x n + f ( t , x n , x n 1 , , x 1 ) + M δ 1 x 1 + δ 2 x 2 + + δ n x n 1 , uniformly on t [ 0 , 1 ] .
Hypothesis 6 (H6).
There exist Q ˜ : [ 0 , 1 ] R + with 0 1 G ( 1 , t ) Q ˜ ( t ) d t > Θ M , K , A , such that
f t , x n , x n 1 , , x 1 + M Q ˜ ( t ) , t [ 0 , 1 ] , x i 0 , Θ M , K , A , i = 1 , 2 , , n .
Theorem 1.
Suppose that (H1)–(H4) hold. Then, (1) has at least one positive solution.
Proof. 
Step 1. There exists a sufficient large number R 1 > Θ M , K , A , such that
v T v ϱ σ 0 , ϱ 0 , v B R 1 P ,
where σ 0 is a fixed element in P 0 , B R 1 = { v P : v < R 1 } . Suppose the contrary i.e., there exist v 1 B R 1 P , ϱ 1 0 , such that
v 1 T v 1 = ϱ 1 σ 0 .
Together with Lemma 6, this implies that
v 1 P 0 .
From (H3) there exists c 1 > 0 , such that
f ( t , x n , x n 1 , , x 1 ) + M γ 1 x 1 + γ 2 x 2 + + γ n x n c 1 , t [ 0 , 1 ] , x i R + , i = 1 , 2 , , n .
Consequently, note that v 1 = R 1 > Θ M , K , A and by (17) we have
v 1 ( t ) ( T v 1 ) ( t ) = 0 1 K ( t , s ) f s , I 0 + β n 1 [ v 1 ( s ) ω ( s ) ] , I 0 + β n 1 β 1 [ v 1 ( s ) ω ( s ) ] , , [ v 1 ( s ) ω ( s ) ] + M d s + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v 1 ( t ) d A ( t ) 0 1 K ( t , s ) γ n I 0 + β n 1 [ v 1 ( s ) ω ( s ) ] + γ n 1 I 0 + β n 1 β 1 [ v 1 ( s ) ω ( s ) ] + + γ 1 [ v 1 ( s ) ω ( s ) ] c 1 d s + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v 1 ( t ) d A ( t ) 0 1 γ n K n ( t , τ ) + γ n 1 K n 1 ( t , τ ) + + γ 1 K ( t , τ ) [ v 1 ( τ ) ω ( τ ) ] d τ + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v 1 ( t ) d A ( t ) c 1 0 1 K ( 1 , s ) d s 0 1 K γ 1 , γ 2 , , γ n ( t , τ ) v 1 ( τ ) d τ + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v 1 ( t ) d A ( t ) c 1 0 1 K ( 1 , s ) d s 0 1 K γ 1 , γ 2 , , γ n ( 1 , τ ) ω ( τ ) d τ .
This implies that
v 1 ( t ) ( B γ 1 , γ 2 , , γ n v 1 ) ( t ) c 2 ,
where c 2 = c 1 0 1 K ( 1 , s ) d s + 0 1 K γ 1 , γ 2 , , γ n ( 1 , τ ) ω ( τ ) d τ . Multiply both sides of (19) by d ψ γ 1 , γ 2 , , γ n ( t ) and integrate over [ 0 , 1 ] and use (11) to obtain
0 1 v 1 ( t ) d ψ γ 1 , γ 2 , , γ n ( t ) 0 1 ( B γ 1 , γ 2 , , γ n v 1 ) ( t ) d ψ γ 1 , γ 2 , , γ n ( t ) c 2 = 0 1 d ψ γ 1 , γ 2 , , γ n ( t ) 0 1 K γ 1 , γ 2 , , γ n ( t , s ) v 1 ( s ) d s + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v 1 ( t ) d A ( t ) c 2 = 0 1 v 1 ( s ) d 0 s d τ 0 1 K γ 1 , γ 2 , , γ n ( t , τ ) d ψ γ 1 , γ 2 , , γ n ( τ ) + 0 1 v 1 ( s ) d A ( τ ) 0 1 Γ ( α β ) Γ α β n 1 t α β n 1 1 d ψ γ 1 , γ 2 , , γ n ( t ) c 2 = B γ 1 , γ 2 , , γ n * ψ γ 1 , γ 2 , , γ n , v 1 ( t ) c 2 = r ( B γ 1 , γ 2 , , γ n ) 0 1 v 1 ( t ) d ψ γ 1 , γ 2 , , γ n ( t ) c 2 .
Solving this inequality, we have
0 1 v 1 ( t ) d ψ γ 1 , γ 2 , , γ n ( t ) c 2 r ( B γ 1 , γ 2 , , γ n ) 1 .
Using (18), we have
v 1 c 2 r ( B γ 1 , γ 2 , , γ n ) 1 0 1 t α β n 1 1 d ψ γ 1 , γ 2 , , γ n ( t ) 1 .
Note that if we can take
R 1 > max Θ M , K , A , c 2 r ( B γ 1 , γ 2 , , γ n ) 1 0 1 t α β n 1 1 d ψ γ 1 , γ 2 , , γ n ( t ) 1
and when v 1 B R 1 P , (17) is not satisfied. Hence, we obtain (16), and Lemma 7 implies that
i ( T , B R 1 P , P ) = 0 .
Step 2. We prove that
v ϱ T v , v B Θ M , K , A P , ϱ [ 0 , 1 ] .
Suppose the contrary, i.e., there exist v 2 B Θ M , K , A P , ϱ 2 [ 0 , 1 ] , such that
v 2 = ϱ 2 T v 2 .
This implies that
v 2 T v 2 .
Note that v 2 = Θ M , K , A and from (H4) we have
( T v 2 ) ( t ) = 0 1 G ( t , s ) f s , I 0 + β n 1 [ v 2 ( s ) ω ( s ) ] , I 0 + β n 1 β 1 [ v 2 ( s ) ω ( s ) ] , , [ v 2 ( s ) ω ( s ) ] + M d s 0 1 G ( 1 , s ) Q ( s ) d s < Θ M , K , A .
This contradicts with (22). Hence, (21) holds, and Lemma 8 implies that
i ( T , B Θ M , K , A P , P ) = 1 .
Combining (20) and (23) we obtain
i ( T , ( B R 1 \ B Θ M , K , A ¯ ) P , P ) = i ( T , B R 1 P , P ) i ( T , B Θ M , K , A P , P ) = 0 1 = 1 .
Then T has a fixed point in ( B R 1 \ B Θ M , K , A ¯ ) P , i.e., there exists v * ( B R 1 \ B Θ M , K , A ¯ ) P , such that T v * = v * , and then u * ( t ) = I 0 + β n 1 [ v * ( t ) ω ( t ) ] is a positive solution for (1). This completes the proof. □
Theorem 2.
Suppose that (H1)–(H2) and (H5)–(H6) hold. Then, (1) has at least one positive solution.
Proof. 
Step 1. We claim that
v T v ϱ σ 1 , ϱ 0 , v B Θ M , K , A P ,
where σ 1 P is a fixed element. Suppose the contrary, i.e., there exist v 3 B Θ M , K , A P and ϱ 3 0 , such that
v 3 = T v 3 + ϱ 3 σ 1 .
This implies that
v 3 T v 3 + ϱ 3 σ 1 T v 3 + ϱ 3 σ 1 T v 3 .
Note that v 3 = Θ M , K , A , and from (H6) we have
T v 3 = max t [ 0 , 1 ] 0 1 G ( t , s ) f s , I 0 + β n 1 [ v 3 ( s ) ω ( s ) ] , I 0 + β n 1 β 1 [ v 3 ( s ) ω ( s ) ] , , [ v 3 ( s ) ω ( s ) ] + M d s max t [ 0 , 1 ] t α β n 1 1 0 1 G ( 1 , s ) Q ˜ ( s ) d s > Θ M , K , A .
This contradicts with (25). Therefore, Lemma 7 implies that
i ( T , B Θ M , K , A P , P ) = 0 .
Step 2. There exists a sufficient large number R 2 > Θ M , K , A such that
v ϱ T v , v B R 2 P , ϱ [ 0 , 1 ] .
Suppose the contrary, i.e., there exist v 4 B R 2 P , ϱ 4 [ 0 , 1 ] , such that
v 4 = ϱ 4 T v 4 .
This, combined with Lemma 6, implies that
v 4 P 0 .
By (H5) there exists c 3 > 0 such that
f ( t , x n , x n 1 , , x 1 ) + M δ 1 x 1 + δ 2 x 2 + + δ n x n + c 3 , t [ 0 , 1 ] , x i R + , i = 1 , 2 , , n .
Note that v 4 = R 2 > Θ M , K , A , and from (28) we have
v 4 ( t ) ( T v 4 ) ( t ) 0 1 K ( t , s ) f s , I 0 + β n 1 [ v 4 ( s ) ω ( s ) ] , I 0 + β n 1 β 1 [ v 4 ( s ) ω ( s ) ] , , [ v 4 ( s ) ω ( s ) ] + M d s + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) 0 1 K ( t , s ) δ n I 0 + β n 1 [ v 4 ( s ) ω ( s ) ] + δ n 1 I 0 + β n 1 β 1 [ v 4 ( s ) ω ( s ) ] + + δ 1 [ v 4 ( s ) ω ( s ) ] d s + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) + c 3 0 1 K ( 1 , s ) d s 0 1 δ n K n ( t , τ ) + δ n 1 K n 1 ( t , τ ) + + δ 1 K ( t , τ ) v ( τ ) d τ + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) + c 3 0 1 K ( 1 , s ) d s = 0 1 K δ 1 , δ 2 , , δ n ( t , τ ) v ( τ ) d τ + Γ ( α β ) Γ α β n 1 t α β n 1 1 0 1 v ( t ) d A ( t ) + c 3 0 1 K ( 1 , s ) d s .
Multiply both sides of (29) by d ψ δ 1 , δ 2 , , δ n ( t ) and integrate over [ 0 , 1 ] and use (11) to obtain
0 1 v 4 ( t ) d ψ δ 1 , δ 2 , , δ n ( t ) 0 1 B δ 1 , δ 2 , , δ n v 4 ( t ) d ψ δ 1 , δ 2 , , δ n ( t ) + c 3 0 1 K ( 1 , s ) d s = 0 1 v 4 ( s ) d 0 s d τ 0 1 K δ 1 , δ 2 , , δ n ( t , τ ) d ψ δ 1 , δ 2 , , δ n ( τ ) + 0 1 v 4 ( s ) d A ( τ ) 0 1 Γ ( α β ) Γ α β n 1 t α β n 1 1 d ψ δ 1 , δ 2 , , δ n ( t ) + c 3 0 1 K ( 1 , s ) d s = B δ 1 , δ 2 , , δ n * ψ δ 1 , δ 2 , , δ n , v 4 ( t ) + c 3 0 1 K ( 1 , s ) d s = r ( B δ 1 , δ 2 , , δ n ) 0 1 v 4 ( t ) d ψ δ 1 , δ 2 , , δ n ( t ) + c 3 0 1 K ( 1 , s ) d s .
Consequently, we have
0 1 v 4 ( t ) d ψ δ 1 , δ 2 , , δ n ( t ) c 3 0 1 K ( 1 , s ) d s 1 r ( B δ 1 , δ 2 , , δ n ) .
Note that v 4 P 0 , and, thus,
v 4 c 3 0 1 K ( 1 , s ) d s 1 r ( B δ 1 , δ 2 , , δ n ) 0 1 t α β n 1 1 d ψ δ 1 , δ 2 , , δ n ( t ) 1 .
If we choose
R 2 > max Θ M , K , A , c 3 0 1 K ( 1 , s ) d s 1 r ( B δ 1 , δ 2 , , δ n ) 0 1 t α β n 1 1 d ψ δ 1 , δ 2 , , δ n ( t ) 1 ,
then (28) is false. Hence, we obtain (27), and Lemma 8 implies that
i ( T , B R 2 P , P ) = 1 .
Combining (26) and (30), we obtain
i ( T , ( B R 2 \ B Θ M , K , A ¯ ) P , P ) = i ( T , B R 2 P , P ) i ( T , B Θ M , K , A P , P ) = 1 0 = 1 .
Then, T has a fixed point in ( B R 2 \ B Θ M , K , A ¯ ) P , i.e., there exists v * * ( B R 2 \ B Θ M , K , A ¯ ) P such that T v * * = v * * , and then u * * ( t ) = I 0 + β n 1 [ v * * ( t ) ω ( t ) ] is a positive solution for (1).
This completes the proof. □
In what follows, we provide two examples to illustrate our main theorems.
Example 1.
Let α = 2.9 , n = 3 , β 1 = 0.5 , β 2 = 1.5 , β = 1.6 , A ( t ) = t , t [ 0 , 1 ] . Γ ( α β n 1 ) Γ ( α β ) = Γ ( 1.4 ) Γ ( 1.3 ) = 0.99 > 0 1 t α β n 1 1 d A ( t ) , and (H2) holds. From Remark 2, we have
r ( B γ 1 , γ 2 , γ 3 ) 0 1 K γ 1 , γ 2 , γ 3 ( 1 , s ) s α β n 1 1 d s .
Thus, there exist γ i with i = 1 3 γ i 2 0 , such that r ( B γ 1 , γ 2 , γ 3 ) > 1 .
Let f ( t , x 3 , x 2 , x 1 ) = Θ M , K , A 1 χ 1 0 1 G ( 1 , t ) d t γ 1 + γ 2 + γ 3 χ 1 e 1 t ( γ 1 x 1 + γ 2 x 2 + γ 3 x 3 ) χ 1 M , χ 1 > 1 , t [ 0 , 1 ] , x i R + , i = 1 , 2 , 3 . Then, when t [ 0 , 1 ] , x i 0 , Θ M , K , A , we have
f ( t , x 3 , x 2 , x 1 ) + M e 1 Θ M , K , A 1 χ 1 0 1 G ( 1 , t ) d t γ 1 + γ 2 + γ 3 χ 1 Θ M , K , A χ 1 ( γ 1 + γ 2 + γ 3 ) χ 1 = e 1 Θ M , K , A 0 1 G ( 1 , t ) d t : Q ( t ) , t [ 0 , 1 ] .
Moreover,
lim inf γ 1 x 1 + γ 2 x 2 + γ 3 x 3 + f ( t , x 3 , x 3 , x 1 ) + M γ 1 x 1 + γ 2 x 2 + γ 3 x 3 = lim inf γ 1 x 1 + γ 2 x 2 + γ 3 x 3 + Θ M , K , A 1 χ 1 0 1 G ( 1 , t ) d t γ 1 + γ 2 + γ 3 χ 1 e 1 t ( γ 1 x 1 + γ 2 x 2 + γ 3 x 3 ) χ 1 γ 1 x 1 + γ 2 x 2 + γ 3 x 3 = + , uniformly on t [ 0 , 1 ] .
Therefore, (H1), (H3)–(H4) hold. From Theorem 1, (1) has at least one positive solution.
Example 2.
Let α = 1.9 , n = 2 , β 1 = 0.2 , β = 0.8 , A ( t ) = t , t [ 0 , 1 ] . Then, Γ ( α β n 1 ) Γ ( α β ) = Γ ( 1.7 ) Γ ( 1.1 ) = 0.96 > 0 1 t α β n 1 1 d A ( t ) , and (H2) holds. Note that in Remark 2 we have
r ( B δ 1 , δ 2 ) 0 1 K δ 1 , δ 2 ( 1 , s ) d s + Γ ( α β ) Γ α β n 1 0 1 d A ( t ) .
If 0 1 K δ 1 , δ 2 ( 1 , s ) d s < 0.04 , and then r ( B δ 1 , δ 2 ) < 1 . Therefore, there exist δ 1 , δ 2 0 ( δ 1 2 + δ 2 2 0 ) to ensure r ( B δ 1 , δ 2 ) < 1 .
Let f ( t , x 2 , x 1 ) = ζ 1 Θ M , K , A 0 1 G ( 1 , t ) d t e Θ M , K , A ( δ 1 + δ 2 ) e ( δ 1 x 1 + δ 2 x 2 ) + t M , ζ 1 > 1 , t [ 0 , 1 ] , x 1 , x 2 R + . Then, when t [ 0 , 1 ] , x i 0 , Θ M , K , A , we have
f ( t , x 2 , x 1 ) + M ζ 1 Θ M , K , A 0 1 G ( 1 , t ) d t e Θ M , K , A ( δ 1 + δ 2 ) e Θ M , K , A ( δ 1 + δ 2 ) = ζ 1 Θ M , K , A 0 1 G ( 1 , t ) d t : Q ˜ ( t ) , t [ 0 , 1 ] .
Moreover,
lim sup δ 1 x 1 + δ 2 x 2 + f ( t , x 2 , x 1 ) + M δ 1 x 1 + δ 2 x 2 = lim sup δ 1 x 1 + δ 2 x 2 + ζ 1 Θ M , K , A 0 1 G ( 1 , t ) d t e Θ M , K , A ( δ 1 + δ 2 ) e ( δ 1 x 1 + δ 2 x 2 ) + t δ 1 x 1 + δ 2 x 2 = 0 , uniformly on t [ 0 , 1 ] .
Hence, (H1), (H5), and (H6) hold. From Theorem 2, (1) has at least one positive solution.

4. Conclusions

In this paper, we use the fixed point index to investigate the existence of positive solutions for the higher-order Riemann–Liouville type fractional integral boundary value problem (1) with fractional derivatives and a semi-positone non-linearity. We note that in most integral boundary value problems, the usual approach in the literature is to incorporate integral boundary conditions into their Green functions (see Remark 1), so there has been no real improvement in the approach. However, in this paper we consider a linear operator B μ 1 , μ 2 , , μ n , and investigate the effects of integral boundary conditions on its eigenvalues. Then, by using Gelfand’s formula and the Krein–Rutman theorem, we present some properties of its first eigenvalue, and obtain our existence theorems for the considered problem under conditions concerning the first eigenvalue of the linear operator B μ 1 , μ 2 , , μ n . The results obtained here improve some results in the literature.

Author Contributions

Conceptualization, W.W., J.Y., J.X. and D.O.; formal analysis, W.W., J.Y., J.X. and D.O.; writing original draft preparation, W.W., J.Y., J.X. and D.O.; writing review and editing, W.W., J.Y., J.X. and D.O.; funding acquisition, W.W., J.Y., J.X. and D.O. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by Natural Science Foundation of Chongqing (grant No. cstc2020jcyj-msxmX0123), and Technology Research Foundation of Chongqing Educational Committee (grant No. KJQN202000528).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zhang, X.; Liu, L.; Wu, Y. The uniqueness of positive solution for a singular fractional differential system involving derivatives. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1400–1409. [Google Scholar] [CrossRef]
  2. Wang, Y.; Liu, L.; Zhang, X.; Wu, Y. Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Appl. Math. Comput. 2015, 258, 312–324. [Google Scholar] [CrossRef]
  3. Tudorache, A.; Luca, R. Existence of positive solutions for a semipositone boundary value problem with sequential fractional derivatives. Math. Methods Appl. Sci. 2021, 44, 14451–14469. [Google Scholar] [CrossRef]
  4. Zhang, X.; Wang, L.; Sun, Q. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter. Appl. Math. Comput. 2014, 226, 708–718. [Google Scholar] [CrossRef]
  5. Jiang, J.; Liu, W.; Wang, H. Positive solutions for higher order nonlocal fractional differential equation with integral boundary conditions. J. Funct. Spaces 2018, 2018, 12. [Google Scholar] [CrossRef]
  6. Wang, Y.; Liu, L.; Wu, Y. Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. Theory Methods Appl. 2011, 74, 3599–3605. [Google Scholar] [CrossRef]
  7. Bai, Z. On positive solutions a nonlinear fractional boundary value problem, Nonlinear Analysis-Theory. Methods Appl. 2010, 72, 916–924. [Google Scholar]
  8. Jiang, W. Eigenvalue interval for multi-point boundary value problems of fractional differential equations. Appl. Math. Comput. 2013, 219, 4570–4575. [Google Scholar] [CrossRef]
  9. Luca, R. Existence and multiplicity of positive solutions for a singular Riemann-Liouville fractional differential problem. Filomat 2020, 34, 3931–3942. [Google Scholar] [CrossRef]
  10. Zhang, X.; Han, Y. Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations. Appl. Math. Lett. 2012, 25, 555–560. [Google Scholar] [CrossRef] [Green Version]
  11. Zhang, X.; Liu, L.; Wu, Y. The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives. Appl. Math. Comput. 2012, 218, 8526–8536. [Google Scholar] [CrossRef]
  12. Zhang, X.; Liu, L.; Wu, Y. Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 2012, 219, 1420–1433. [Google Scholar] [CrossRef]
  13. Wu, J.; Zhang, X. Eigenvalue problem of nonlinear semipositone higher order fractional differential equations. Abstr. Appl. Anal. 2012, 2012, 740760. [Google Scholar] [CrossRef]
  14. Jia, M.; Zhang, X.; Gu, X. Nontrivial solutions for a higher fractional differential equation with fractional multi-point boundary conditions. Bound. Value Probl. 2012, 2012, 70. [Google Scholar] [CrossRef] [Green Version]
  15. Zhang, K.; O’Regan, D.; Xu, J.; Fu, Z. Nontrivial solutions for a higher order nonlinear fractional boundary value problem involving Riemann-Liouville fractional derivatives. J. Funct. Spaces 2019, 2019, 2381530. [Google Scholar] [CrossRef] [Green Version]
  16. Liu, X.; Liu, L.; Wu, Y. Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018, 2018, 24. [Google Scholar] [CrossRef] [Green Version]
  17. Zhang, S.; Su, X. Unique existence of solution to initial value problem for fractional differential equation involving with fractional derivative of variable order. Chaos Solitons Fractals 2021, 148, 111040. [Google Scholar] [CrossRef]
  18. Abbas, H.; Belmekki, M.; Cabada, A. Positive solutions for fractional boundary value problems with integral boundary conditions and parameter dependence. Comput. Appl. Math. 2021, 40, 158. [Google Scholar] [CrossRef]
  19. Wattanakejorn, V.; Ntouyas, S.K.; Sitthiwirattham, T. On a boundary value problem for fractional Hahn integro-difference equations with four-point fractional integral boundary conditions. AIMS Math. 2022, 7, 632–650. [Google Scholar] [CrossRef]
  20. Batik, S.; Yoruk, F. Semipositone fractional boundary value problems with n point fractional integral boundary conditions. Miskolc Math. Notes 2022, 23, 93–104. [Google Scholar] [CrossRef]
  21. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  22. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  23. Ghany, H.A.; Hyder, A.; Zakarya, M. Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives. Chin. Phys. B 2020, 29, 30203. [Google Scholar] [CrossRef]
  24. Zakarya, M.; Altanji, M.; AlNemer, G.; Abd El-Hamid, H.A.; Cesarano, C.; Rezk, H.M. Fractional reverse Coposn’s inequalities via conformable calculus on time scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
  25. Khalid, A.; Rehan, A.; Nisar, K.S.; Abdel-aty, A.H.; Zakarya, M. Splines solutions of higher-order BVPs that arise in consistent magnetized force field. Fractals 2022, 30, 2240043. [Google Scholar] [CrossRef]
  26. Cheng, Q.; Zhang, D.; Hu, S.; Xue, Y. Basis of Real Variable Function and Functional Analysis; Higher Education Press: Beijing, China, 2019. [Google Scholar]
  27. Zhong, C.; Fan, X.; Chen, W. Introduction to Nonlinear Functional Analysis; Lanzhou University Press: Lanzhou, China, 2004. [Google Scholar]
  28. Kreĭn, M.G.; Rutman, M.A. Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Trans. 1950, 26, 128. [Google Scholar]
  29. Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wang, W.; Ye, J.; Xu, J.; O’Regan, D. Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives. Symmetry 2022, 14, 2320. https://doi.org/10.3390/sym14112320

AMA Style

Wang W, Ye J, Xu J, O’Regan D. Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives. Symmetry. 2022; 14(11):2320. https://doi.org/10.3390/sym14112320

Chicago/Turabian Style

Wang, Wuyang, Jun Ye, Jiafa Xu, and Donal O’Regan. 2022. "Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives" Symmetry 14, no. 11: 2320. https://doi.org/10.3390/sym14112320

APA Style

Wang, W., Ye, J., Xu, J., & O’Regan, D. (2022). Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives. Symmetry, 14(11), 2320. https://doi.org/10.3390/sym14112320

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop