Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives
Abstract
:1. Introduction
2. Preliminaries
- (i)
- and for ,
- (ii)
- .
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Liu, L.; Wu, Y. The uniqueness of positive solution for a singular fractional differential system involving derivatives. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1400–1409. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zhang, X.; Wu, Y. Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Appl. Math. Comput. 2015, 258, 312–324. [Google Scholar] [CrossRef]
- Tudorache, A.; Luca, R. Existence of positive solutions for a semipositone boundary value problem with sequential fractional derivatives. Math. Methods Appl. Sci. 2021, 44, 14451–14469. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Sun, Q. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter. Appl. Math. Comput. 2014, 226, 708–718. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, W.; Wang, H. Positive solutions for higher order nonlocal fractional differential equation with integral boundary conditions. J. Funct. Spaces 2018, 2018, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wu, Y. Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. Theory Methods Appl. 2011, 74, 3599–3605. [Google Scholar] [CrossRef]
- Bai, Z. On positive solutions a nonlinear fractional boundary value problem, Nonlinear Analysis-Theory. Methods Appl. 2010, 72, 916–924. [Google Scholar]
- Jiang, W. Eigenvalue interval for multi-point boundary value problems of fractional differential equations. Appl. Math. Comput. 2013, 219, 4570–4575. [Google Scholar] [CrossRef]
- Luca, R. Existence and multiplicity of positive solutions for a singular Riemann-Liouville fractional differential problem. Filomat 2020, 34, 3931–3942. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y. Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations. Appl. Math. Lett. 2012, 25, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Wu, Y. The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives. Appl. Math. Comput. 2012, 218, 8526–8536. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y. Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 2012, 219, 1420–1433. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X. Eigenvalue problem of nonlinear semipositone higher order fractional differential equations. Abstr. Appl. Anal. 2012, 2012, 740760. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, X.; Gu, X. Nontrivial solutions for a higher fractional differential equation with fractional multi-point boundary conditions. Bound. Value Probl. 2012, 2012, 70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; O’Regan, D.; Xu, J.; Fu, Z. Nontrivial solutions for a higher order nonlinear fractional boundary value problem involving Riemann-Liouville fractional derivatives. J. Funct. Spaces 2019, 2019, 2381530. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, L.; Wu, Y. Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018, 2018, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Su, X. Unique existence of solution to initial value problem for fractional differential equation involving with fractional derivative of variable order. Chaos Solitons Fractals 2021, 148, 111040. [Google Scholar] [CrossRef]
- Abbas, H.; Belmekki, M.; Cabada, A. Positive solutions for fractional boundary value problems with integral boundary conditions and parameter dependence. Comput. Appl. Math. 2021, 40, 158. [Google Scholar] [CrossRef]
- Wattanakejorn, V.; Ntouyas, S.K.; Sitthiwirattham, T. On a boundary value problem for fractional Hahn integro-difference equations with four-point fractional integral boundary conditions. AIMS Math. 2022, 7, 632–650. [Google Scholar] [CrossRef]
- Batik, S.; Yoruk, F. Semipositone fractional boundary value problems with n point fractional integral boundary conditions. Miskolc Math. Notes 2022, 23, 93–104. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ghany, H.A.; Hyder, A.; Zakarya, M. Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives. Chin. Phys. B 2020, 29, 30203. [Google Scholar] [CrossRef]
- Zakarya, M.; Altanji, M.; AlNemer, G.; Abd El-Hamid, H.A.; Cesarano, C.; Rezk, H.M. Fractional reverse Coposn’s inequalities via conformable calculus on time scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
- Khalid, A.; Rehan, A.; Nisar, K.S.; Abdel-aty, A.H.; Zakarya, M. Splines solutions of higher-order BVPs that arise in consistent magnetized force field. Fractals 2022, 30, 2240043. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, D.; Hu, S.; Xue, Y. Basis of Real Variable Function and Functional Analysis; Higher Education Press: Beijing, China, 2019. [Google Scholar]
- Zhong, C.; Fan, X.; Chen, W. Introduction to Nonlinear Functional Analysis; Lanzhou University Press: Lanzhou, China, 2004. [Google Scholar]
- Kreĭn, M.G.; Rutman, M.A. Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Trans. 1950, 26, 128. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Ye, J.; Xu, J.; O’Regan, D. Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives. Symmetry 2022, 14, 2320. https://doi.org/10.3390/sym14112320
Wang W, Ye J, Xu J, O’Regan D. Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives. Symmetry. 2022; 14(11):2320. https://doi.org/10.3390/sym14112320
Chicago/Turabian StyleWang, Wuyang, Jun Ye, Jiafa Xu, and Donal O’Regan. 2022. "Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives" Symmetry 14, no. 11: 2320. https://doi.org/10.3390/sym14112320
APA StyleWang, W., Ye, J., Xu, J., & O’Regan, D. (2022). Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives. Symmetry, 14(11), 2320. https://doi.org/10.3390/sym14112320