Descent Derivative-Free Method Involving Symmetric Rank-One Update for Solving Convex Constrained Nonlinear Monotone Equations and Application to Image Recovery
Abstract
:1. Preliminaries and Motivation
- 1.
- The search direction of the proposed method is set up based on the modified SR1 updating formula.
- 2.
- The direction of search has some nice features such as boundedness and so on.
- 3.
- The convergence result of the new method is established under some mild conditions.
- 4.
- The numerical performance of the new method is explored by implementing it on a set of test problems.
- 5.
- The proposed method is implemented on image deblurring problem.
2. DFSR1 Method with Its Convergence Results
Algorithm 1: Derivative-free symmetric rank-one method (DFSR1). |
Input: Given , , . Step 1: Determine . If , terminate. Step 3: Set with i being the least non-negative integer satisfying Step 4: If terminate the process. If not, compute the new point by Step 5: Increase the counter, i.e., and repeat from step 1. |
3. Numerical Experiments
4. Application in Image Deblurring
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sulaiman, I.M.; Awwal, A.M.; Malik, M.; Pakkaranang, N.; Panyanak, B. A Derivative-Free MZPRP Projection Method for Convex Constrained Nonlinear Equations and Its Application in Compressive Sensing. Mathematics 2022, 10, 2884. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Agarwal, R.P.; Shah, R.; Ababneh, O.Y.; Weera, W. A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas. Mathematics 2022, 10, 2293. [Google Scholar] [CrossRef]
- Mohammad, H.; Awwal, A.M. Globally convergent diagonal Polak–Ribière–Polyak like algorithm for nonlinear equations. Numer. Algorithms 2022, 1–20. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Alshehry, A.S.; Nonlaopon, K.; Shah, R.; Ababneh, O.Y. Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm. AIMS Math. 2022, 7, 19739–19757. [Google Scholar] [CrossRef]
- Halilu, A.S.; Majumder, A.; Waziri, M.Y.; Ahmed, K.; Awwal, A.M. Motion control of the two joint planar robotic manipulators through accelerated Dai–Liao method for solving system of nonlinear equations. Eng. Comput. 2021, 39, 1802–1840. [Google Scholar] [CrossRef]
- Awwal, A.M.; Kumam, P.; Sitthithakerngkiet, K.; Bakoji, A.M.; Halilu, A.S.; Sulaiman, I.M. Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application. AIMS Math. 2021, 6, 8792–8814. [Google Scholar] [CrossRef]
- Halilu, A.S.; Majumder, A.; Waziri, M.Y.; Awwal, A.M.; Ahmed, K. On solving double direction methods for convex constrained monotone nonlinear equations with image restoration. Comput. Appl. Math. 2021, 40, 1–27. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Khan, A.; Ababneh, O.; Botmart, T. Fractional view analysis of Kersten-Krasil’shchik coupled KdV-mKdV systems with non-singular kernel derivatives. AIMS Math. 2022, 7, 18334–18359. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Alshehry, A.S.; Nonlaopon, K.; Shah, R.; Ababneh, O.Y. Fractional view analysis of delay differential equations via numerical method. AIMS Math. 2022, 7, 20510–20523. [Google Scholar] [CrossRef]
- Wan, Z.; Chen, Y.; Huang, S.; Feng, D. A modified nonmonotone BFGS algorithm for solving smooth nonlinear equations. Optim. Lett. 2014, 8, 1845–1860. [Google Scholar] [CrossRef]
- Leong, W.J.; Hassan, M.A.; Waziri, M.Y. A matrix-free quasi-Newton method for solving large-scale nonlinear systems. Comput. Math. Appl. 2011, 62, 2354–2363. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, H.; Waziri, M.Y. On Broyden-like update via some quadratures for solving nonlinear systems of equations. Turk. J. Math. 2015, 39, 335–345. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Ahookhosh, M.; Esmaeili, H.; Kimiaei, M. An effective trust-region-based approach for symmetric nonlinear systems. Int. J. Comput. Math. 2013, 90, 671–690. [Google Scholar] [CrossRef]
- Yuan, Y.X. Recent advances in trust region algorithms. Math. Program. 2015, 151, 249–281. [Google Scholar] [CrossRef]
- Cheng, W.; Xiao, Y.; Hu, Q. A family of derivative-free conjugate gradient methods for large-scale nonlinear systems of equations. J. Comput. Appl. Math. 2009, 224, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.K.; Li, S.J. A projection method for convex constrained monotone nonlinear equations with applications. Comput. Math. Appl. 2015, 70, 2442–2453. [Google Scholar] [CrossRef]
- Waziri, M.Y.; Muhammad, H.U.; Halilu, A.S.; Ahmed, K. Modified matrix-free methods for solving system of nonlinear equations. Optimization 2021, 70, 2321–2340. [Google Scholar] [CrossRef]
- Awwal, A.M.; Kumam, P.; Abubakar, A.B. Spectral modified Polak–Ribiére–Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations. Appl. Math. Comput. 2019, 362, 124514. [Google Scholar] [CrossRef]
- Abubakar, A.B.; Kumam, P.; Awwal, A.M.; Thounthong, P. A modified self-adaptive conjugate gradient method for solving convex constrained monotone nonlinear equations for signal recovery problems. Mathematics 2019, 7, 693. [Google Scholar] [CrossRef] [Green Version]
- Solodov, M.V.; Svaiter, B.F. A globally convergent inexact Newton method for systems of monotone equations. In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods; Springer: Boston, MA, USA, 1998; pp. 355–369. [Google Scholar]
- Hager, W.W.; Zhang, H. Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. (TOMS) 2006, 32, 113–137. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, H. A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 2013, 405, 310–319. [Google Scholar] [CrossRef]
- Dai, Y.; Yuan, Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 1999, 10, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Feng, Y. A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algorithms 2019, 82, 245–262. [Google Scholar] [CrossRef]
- Sun, W.; Yuan, Y.X. Optimization Theory and Methods: Nonlinear Programming; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 1. [Google Scholar]
- Zhang, L.; Zhou, W.; Li, D.H. A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 2006, 26, 629–640. [Google Scholar] [CrossRef]
- Pola, E.; Ribiere, G. Note sur la convergence de methodes de directions conjugées. Rev. Fr. Informat Rech. Oper. Annee 1969, 16, 35–43. [Google Scholar]
- Polyak, B.T. The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [Google Scholar] [CrossRef]
- Awwal, A.M.; Kumam, P.; Mohammad, H.; Watthayu, W.; Abubakar, A. A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing ℓ1 regularized problem. Optimization 2020, 70, 1231–1259. [Google Scholar] [CrossRef]
- Perry, A. A modified conjugate gradient algorithm. Oper. Res. 1978, 26, 1073–1078. [Google Scholar] [CrossRef] [Green Version]
- Awwal, A.M.; Wang, L.; Kumam, P.; Mohammad, H.; Watthayu, W. A projection Hestenes–Stiefel method with spectral parameter for nonlinear monotone equations and signal processing. Math. Comput. Appl. 2020, 25, 27. [Google Scholar] [CrossRef]
- Awwal, A.M.; Wang, L.; Kumam, P.; Mohammad, H. A two-step spectral gradient projection method for system of nonlinear monotone equations and image deblurring problems. Symmetry 2020, 12, 874. [Google Scholar] [CrossRef]
- Koorapetse, M.; Kaelo, P. An efficient hybrid conjugate gradient-based projection method for convex constrained nonlinear monotone equations. J. Interdiscip. Math. 2019, 22, 1031–1050. [Google Scholar] [CrossRef]
- Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. Ser. 2002, 91, 201–213. [Google Scholar] [CrossRef]
- Figueiredo, M.A.; Nowak, R.D. An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 2003, 12, 906–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mol, C.; Defrise, M. A note on wavelet-based inversion algorithms. Contemp. Math. 2002, 313, 85–96. [Google Scholar]
- Yang, J.; Yin, W.; Zhang, Y.; Wang, Y. A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2009, 2, 569–592. [Google Scholar] [CrossRef]
- Figueiredo, M.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wang, Q.; Hu, Q. Non-smooth equations based method for ℓ1-norm problems with applications to compressed sensing. Nonlinear Anal. Theory, Methods Appl. 2011, 74, 3570–3577. [Google Scholar] [CrossRef]
- Pang, J. Inexact Newton methods for the nonlinear complementarity problem. Math. Program. 1986, 36, 54–71. [Google Scholar] [CrossRef]
- Hager, W.W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 2005, 16, 170–192. [Google Scholar] [CrossRef] [Green Version]
- Yahaya, M.M.; Kumam, P.; Awwal, A.M.; Aji, S. Alternative structured spectral gradient algorithms for solving nonlinear least-squares problems. Heliyon 2021, 7, e07499. [Google Scholar] [CrossRef]
- Awwal, A.M.; Kumam, P.; Wang, L.; Yahaya, M.M.; Mohammad, H. On the Barzilai–Borwein gradient methods with structured secant equation for nonlinear least squares problems. Optim. Methods Softw. 2020, 1–20. [Google Scholar] [CrossRef]
- La Cruz, W.; Martínez, J.M.; Raydan, M. Spectral residual method without gradient information for solving large-scale nonlinear systems: Theory and experiments. Citeseer 2004. Available online: http://kuainasi.ciens.ucv.ve/mraydan/downloadpapers/TechRep.pdf (accessed on 17 October 2022).
- La Cruz, W. A spectral algorithm for large-scale systems of nonlinear monotone equations. Numer. Algorithms 2017, 76, 1109–1130. [Google Scholar] [CrossRef]
- Zhou, W.; Shen, D. An Inexact PRP Conjugate Gradient Method for Symmetric Nonlinear Equations. Numer. Funct. Anal. Optim. 2014, 35, 370–388. [Google Scholar] [CrossRef]
- Gao, P.; He, C.; Liu, Y. An adaptive family of projection methods for constrained monotone nonlinear equations with applications. Appl. Math. Comput. 2019, 359, 1–16. [Google Scholar] [CrossRef]
- Yu, G.; Niu, S.; Ma, J. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. J. Ind. Manag. Optim. 2013, 9, 117–129. [Google Scholar] [CrossRef]
Starting Points (SP) | Values |
---|---|
Problem 1 | DFSR1 | PDY | HCGP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | ×1 | 6 | 13 | 0.05181 | 2.2 | 36 | 74 | 0.031651 | 3.49 | 18 | 38 | 0.040198 | 6.82 |
×2 | 2 | 5 | 0.007194 | 4.44 | 42 | 85 | 0.056619 | 8.84 | 20 | 41 | 0.014543 | 2.79 | |
×3 | 4 | 9 | 0.004168 | 0 | 46 | 94 | 0.024212 | 2.21 | 20 | 41 | 0.007144 | 9.54 | |
×4 | 5 | 12 | 0.003428 | 4.85 | 40 | 82 | 0.023213 | 3.16 | 17 | 36 | 0.005264 | 6.81 | |
×5 | 1 | 3 | 0.003915 | 0 | 51 | 104 | 0.031001 | 9.89 | 19 | 39 | 0.008887 | 7.54 | |
×6 | 1 | 3 | 0.001159 | 0 | 48 | 98 | 0.031394 | 7.21 | 19 | 39 | 0.008946 | 7.44 | |
5000 | ×1 | 7 | 15 | 0.015875 | 5.38 | 27 | 56 | 0.055308 | 1.3 | 19 | 39 | 0.042978 | 7.61 |
×2 | 2 | 5 | 0.010399 | 4.44 | 42 | 85 | 0.11446 | 8.84 | 20 | 41 | 0.018623 | 2.79 | |
×3 | 4 | 9 | 0.010012 | 0 | 28 | 58 | 0.052897 | 4.05 | 21 | 43 | 0.040893 | 5.3 | |
×4 | 5 | 12 | 0.010918 | 4.85 | 36 | 74 | 0.067928 | 3.44 | 17 | 36 | 0.02057 | 6.82 | |
×5 | 1 | 3 | 0.004772 | 0 | 51 | 104 | 0.14059 | 7.98 | 19 | 40 | 0.030715 | 8.34 | |
×6 | 1 | 3 | 0.003104 | 0 | 50 | 102 | 0.11267 | 7.91 | 19 | 40 | 0.034105 | 8.28 | |
10,000 | ×1 | 6 | 13 | 0.023978 | 3.74 | 29 | 60 | 0.10814 | 2.14 | 18 | 38 | 0.05138 | 5.38 |
×2 | 2 | 5 | 0.008067 | 4.44 | 42 | 85 | 0.1269 | 8.84 | 20 | 41 | 0.054415 | 2.79 | |
×3 | 4 | 9 | 0.013192 | 0 | 31 | 64 | 0.12693 | 1.18 | 20 | 41 | 0.049781 | 7.49 | |
×4 | 5 | 12 | 0.020775 | 4.85 | 41 | 84 | 0.14847 | 1.1 | 17 | 36 | 0.066033 | 6.82 | |
×5 | 1 | 3 | 0.005923 | 0 | 47 | 95 | 0.19518 | 5.62 | 20 | 41 | 0.054006 | 5.89 | |
×6 | 1 | 3 | 0.006829 | 0 | 54 | 109 | 0.1683 | 5.66 | 18 | 37 | 0.050708 | 5.87 | |
50,000 | ×1 | 4 | 9 | 0.078887 | 0 | 28 | 58 | 0.4178 | 8.48 | 19 | 39 | 0.22635 | 6.01 |
×2 | 2 | 5 | 0.030988 | 4.44 | 42 | 85 | 0.5385 | 8.84 | 20 | 41 | 0.20855 | 2.79 | |
×3 | 4 | 9 | 0.088267 | 0 | 44 | 90 | 0.67125 | 2.61 | 20 | 42 | 0.26323 | 8.36 | |
×4 | 5 | 12 | 0.07949 | 4.85 | 45 | 92 | 0.66928 | 2.84 | 17 | 36 | 0.22042 | 6.82 | |
×5 | 1 | 3 | 0.022959 | 0 | 51 | 104 | 0.83104 | 6.27 | 19 | 40 | 0.22258 | 6.57 | |
×6 | 1 | 3 | 0.020248 | 0 | 46 | 94 | 0.72275 | 6.27 | 17 | 36 | 0.2241 | 6.57 | |
100,000 | ×1 | 4 | 9 | 0.12576 | 0 | 21 | 44 | 0.74785 | 7.7 | 18 | 37 | 0.38516 | 8.5 |
×2 | 2 | 5 | 0.05741 | 4.44 | 42 | 85 | 1.0936 | 8.84 | 20 | 41 | 0.43528 | 2.79 | |
×3 | 4 | 9 | 0.13963 | 0 | 37 | 76 | 1.1562 | 4.43 | 21 | 43 | 0.48012 | 5.91 | |
×4 | 5 | 12 | 0.13249 | 4.85 | 32 | 66 | 0.76896 | 7.38 | 17 | 36 | 0.34743 | 6.82 | |
×5 | 1 | 3 | 0.075883 | 0 | 51 | 104 | 1.4413 | 7.08 | 19 | 40 | 0.45343 | 9.3 | |
×6 | 1 | 3 | 0.036755 | 0 | 51 | 104 | 1.4801 | 7.07 | 18 | 38 | 0.40378 | 9.29 |
Problem 2 | DFSR1 | PDY | HCGP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | ×1 | 2 | 5 | 0.002032 | 0 | 21 | 44 | 0.042925 | 7.52 | 11 | 23 | 0.012052 | 7.5 |
×2 | 1 | 3 | 0.001357 | 0 | 19 | 40 | 0.019641 | 5.27 | 9 | 20 | 0.008822 | 9.88 | |
×3 | 1 | 3 | 0.000939 | 0 | 24 | 50 | 0.033042 | 8.19 | 1 | 3 | 0.002222 | 0 | |
×4 | 1 | 3 | 0.001431 | 0 | 20 | 42 | 0.027811 | 5.35 | 10 | 21 | 0.006196 | 8.65 | |
×5 | 1 | 3 | 0.001253 | 0 | 23 | 48 | 0.007525 | 9.58 | 12 | 25 | 0.00593 | 7.76 | |
×6 | 1 | 3 | 0.000854 | 0 | 23 | 48 | 0.015592 | 9.65 | 12 | 25 | 0.003991 | 7.92 | |
5000 | ×1 | 2 | 5 | 0.00407 | 0 | 22 | 46 | 0.031534 | 2.34 | 11 | 24 | 0.016444 | 8.38 |
×2 | 1 | 3 | 0.003971 | 0 | 19 | 40 | 0.032489 | 5.27 | 9 | 20 | 0.016042 | 9.88 | |
×3 | 1 | 3 | 0.003208 | 0 | 26 | 54 | 0.046987 | 9.45 | 1 | 3 | 0.002345 | 0 | |
×4 | 1 | 3 | 0.007746 | 0 | 20 | 42 | 0.03322 | 5.35 | 10 | 21 | 0.009836 | 8.65 | |
×5 | 1 | 3 | 0.003147 | 0 | 25 | 52 | 0.041525 | 5.36 | 12 | 26 | 0.015802 | 8.68 | |
×6 | 1 | 3 | 0.003627 | 0 | 26 | 54 | 0.039863 | 5.31 | 12 | 26 | 0.024356 | 8.64 | |
10,000 | ×1 | 2 | 5 | 0.009787 | 0 | 22 | 46 | 0.06466 | 3.31 | 12 | 25 | 0.028574 | 5.93 |
×2 | 1 | 3 | 0.004975 | 0 | 19 | 40 | 0.10797 | 5.27 | 9 | 20 | 0.022977 | 9.88 | |
×3 | 1 | 3 | 0.00518 | 0 | 27 | 56 | 0.078982 | 6.68 | 1 | 3 | 0.004461 | 0 | |
×4 | 1 | 3 | 0.0054 | 0 | 20 | 42 | 0.066558 | 5.35 | 10 | 21 | 0.021541 | 8.65 | |
×5 | 1 | 3 | 0.005071 | 0 | 25 | 52 | 0.074131 | 7.58 | 13 | 27 | 0.041391 | 6.14 | |
×6 | 1 | 3 | 0.009867 | 0 | 25 | 52 | 0.07415 | 7.57 | 13 | 27 | 0.032896 | 6.14 | |
50,000 | ×1 | 2 | 5 | 0.025063 | 0 | 24 | 50 | 0.52259 | 6.65 | 12 | 26 | 0.19102 | 6.63 |
×2 | 1 | 3 | 0.04304 | 0 | 19 | 40 | 0.40302 | 5.27 | 9 | 20 | 0.076766 | 9.88 | |
×3 | 1 | 3 | 0.020766 | 0 | 27 | 56 | 0.37274 | 2.37 | 1 | 3 | 0.013116 | 0 | |
×4 | 1 | 3 | 0.0234 | 0 | 20 | 42 | 0.20554 | 5.35 | 10 | 21 | 0.090916 | 8.65 | |
×5 | 1 | 3 | 0.016834 | 0 | 26 | 54 | 0.27215 | 8.48 | 13 | 28 | 0.16845 | 6.86 | |
×6 | 1 | 3 | 0.01886 | 0 | 26 | 54 | 0.55913 | 8.47 | 13 | 28 | 0.12361 | 6.86 | |
100,000 | ×1 | 2 | 5 | 0.057742 | 0 | 19 | 40 | 0.81337 | 3.35 | 12 | 26 | 0.21312 | 9.37 |
×2 | 1 | 3 | 0.038002 | 0 | 19 | 40 | 0.36734 | 5.27 | 9 | 20 | 0.17563 | 9.88 | |
×3 | 1 | 3 | 0.029571 | 0 | 34 | 70 | 1.0436 | 5.62 | 1 | 3 | 0.019906 | 0 | |
×4 | 1 | 3 | 0.033132 | 0 | 20 | 42 | 0.8276 | 5.35 | 10 | 21 | 0.24443 | 8.65 | |
×5 | 1 | 3 | 0.048638 | 0 | 27 | 56 | 0.70974 | 9.24 | 13 | 28 | 0.24368 | 9.7 | |
×6 | 1 | 3 | 0.032773 | 0 | 27 | 56 | 0.94873 | 9.24 | 13 | 28 | 0.31102 | 9.72 |
Problem 3 | DFSR1 | PDY | HCGP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | ×1 | 2 | 5 | 0.00159 | 0 | 1 | 3 | 0.023833 | 0 | 1 | 3 | 0.002252 | 0 |
×2 | 2 | 5 | 0.00307 | 2.22 | 1 | 3 | 0.00305 | 0 | 9 | 19 | 0.002664 | 7.45 | |
×3 | 3 | 7 | 0.003173 | 0 | 1 | 3 | 0.001358 | 0 | 2 | 5 | 0.002427 | 0 | |
×4 | 3 | 7 | 0.002315 | 1.73 | 5 | 12 | 0.002498 | 7.88 | 11 | 23 | 0.004118 | 7.75 | |
×5 | 4 | 9 | 0.003867 | 3.2 | 29 | 59 | 0.010169 | 9.22 | 12 | 25 | 0.003538 | 9.66 | |
×6 | 4 | 9 | 0.003005 | 5.53 | 14 | 30 | 0.009398 | 1.71 | 12 | 25 | 0.003652 | 8.58 | |
5000 | ×1 | 2 | 5 | 0.003777 | 0 | 1 | 3 | 0.002194 | 0 | 1 | 3 | 0.002015 | 0 |
×2 | 2 | 5 | 0.004794 | 2.22 | 1 | 3 | 0.002093 | 0 | 9 | 19 | 0.012483 | 7.45 | |
×3 | 3 | 7 | 0.005791 | 0 | 1 | 3 | 0.003394 | 0 | 2 | 5 | 0.014348 | 0 | |
×4 | 3 | 7 | 0.007381 | 1.85 | 5 | 12 | 0.00686 | 6.9 | 11 | 23 | 0.013458 | 7.88 | |
×5 | 4 | 9 | 0.01028 | 7.25 | 25 | 52 | 0.019655 | 6.94 | 13 | 27 | 0.009709 | 5.4 | |
×6 | 4 | 9 | 0.0095 | 4.8 | 21 | 43 | 0.031217 | 4.46 | 12 | 26 | 0.014854 | 9.65 | |
10,000 | ×1 | 2 | 5 | 0.007738 | 0 | 1 | 3 | 0.00811 | 0 | 1 | 3 | 0.003198 | 0 |
×2 | 2 | 5 | 0.00719 | 2.22 | 1 | 3 | 0.008884 | 0 | 9 | 19 | 0.017369 | 7.45 | |
×3 | 3 | 7 | 0.010795 | 0 | 1 | 3 | 0.011714 | 0 | 2 | 5 | 0.005369 | 0 | |
×4 | 3 | 7 | 0.009558 | 1.87 | 5 | 12 | 0.026699 | 6.79 | 11 | 23 | 0.022454 | 7.9 | |
×5 | 4 | 9 | 0.012112 | 1.03 | 27 | 55 | 0.083228 | 6.22 | 13 | 27 | 0.023442 | 7.63 | |
×6 | 4 | 9 | 0.011263 | 1.07 | 21 | 43 | 0.039402 | 8.19 | 13 | 27 | 0.023976 | 7.33 | |
50,000 | ×1 | 2 | 5 | 0.021911 | 0 | 1 | 3 | 0.01112 | 0 | 1 | 3 | 0.009598 | 0 |
×2 | 2 | 5 | 0.019317 | 2.22 | 1 | 3 | 0.009912 | 0 | 9 | 19 | 0.056567 | 7.45 | |
×3 | 3 | 7 | 0.07312 | 0 | 1 | 3 | 0.023374 | 0 | 2 | 5 | 0.016131 | 0 | |
×4 | 3 | 7 | 0.033954 | 1.88 | 5 | 12 | 0.049476 | 6.69 | 11 | 23 | 0.081633 | 7.92 | |
×5 | 4 | 9 | 0.060339 | 2.3 | 1 | 3 | 0.014165 | 0 | 13 | 28 | 0.12374 | 8.53 | |
×6 | 4 | 9 | 0.044374 | 3.23 | 1 | 3 | 0.028178 | 0 | 13 | 28 | 0.10853 | 8.87 | |
100,000 | ×1 | 2 | 5 | 0.044082 | 0 | 1 | 3 | 0.037395 | 0 | 1 | 3 | 0.016332 | 0 |
×2 | 2 | 5 | 0.049941 | 2.22 | 1 | 3 | 0.040274 | 0 | 9 | 19 | 0.11363 | 7.45 | |
×3 | 3 | 7 | 0.072729 | 0 | 1 | 3 | 0.083691 | 0 | 2 | 5 | 0.04588 | 0 | |
×4 | 3 | 7 | 0.071052 | 1.88 | 5 | 12 | 0.092381 | 6.68 | 11 | 23 | 0.1511 | 7.92 | |
×5 | 4 | 9 | 0.079648 | 3.25 | 1 | 3 | 0.045013 | 0 | 14 | 29 | 0.24708 | 6.03 | |
×6 | 4 | 9 | 0.14616 | 3.22 | 1 | 3 | 0.024994 | 0 | 14 | 29 | 0.18329 | 5.74 |
Problem 4 | DFSR1 | PDY | HCGP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | ×1 | 18 | 38 | 0.007132 | 8.9 | 6 | 14 | 0.037213 | 2.09 | 8 | 17 | 0.00518 | 9.7 |
×2 | 13 | 28 | 0.005894 | 8.43 | 34 | 70 | 0.024662 | 6.1 | 11 | 24 | 0.010193 | 2.47 | |
×3 | 20 | 42 | 0.007719 | 4.95 | 6 | 14 | 0.006326 | 6.55 | 6 | 13 | 0.002903 | 8.28 | |
×4 | 10 | 22 | 0.004068 | 8.79 | 33 | 68 | 0.061277 | 5.47 | 10 | 22 | 0.007482 | 4.59 | |
×5 | 8 | 18 | 0.004327 | 6.23 | 48 | 98 | 0.057661 | 8.73 | 18 | 38 | 0.009034 | 6.91 | |
×6 | 10 | 22 | 0.005321 | 4.02 | 49 | 100 | 0.078792 | 5.53 | 13 | 27 | 0.006522 | 4.87 | |
5000 | ×1 | 19 | 40 | 0.042286 | 7.94 | 6 | 14 | 0.027803 | 4.68 | 8 | 18 | 0.024965 | 1.8 |
×2 | 15 | 32 | 0.038477 | 6.6 | 35 | 72 | 0.13751 | 5.59 | 11 | 24 | 0.023137 | 9.68 | |
×3 | 21 | 44 | 0.05194 | 4.42 | 7 | 16 | 0.038339 | 9.35 | 6 | 13 | 0.013392 | 1.85 | |
×4 | 12 | 26 | 0.024726 | 1.1 | 36 | 74 | 0.13227 | 6.96 | 14 | 30 | 0.034095 | 3.04 | |
×5 | 8 | 18 | 0.025379 | 1.26 | 34 | 70 | 0.1559 | 7.37 | 13 | 27 | 0.017819 | 3.58 | |
×6 | 8 | 18 | 0.01772 | 3.49 | 43 | 88 | 0.27922 | 7.08 | 15 | 32 | 0.033045 | 6.32 | |
10,000 | ×1 | 20 | 42 | 0.096094 | 4.48 | 6 | 14 | 0.060341 | 6.62 | 8 | 18 | 0.031653 | 2.55 |
×2 | 15 | 32 | 0.069529 | 1 | 16 | 34 | 0.12798 | 8.16 | 11 | 24 | 0.053742 | 4.33 | |
×3 | 21 | 44 | 0.15177 | 6.25 | 7 | 16 | 0.059352 | 1.36 | 6 | 13 | 0.025402 | 2.62 | |
×4 | 14 | 29 | 0.066288 | 3.87 | 35 | 72 | 0.24323 | 5.62 | 15 | 32 | 0.066142 | 1.92 | |
×5 | 8 | 18 | 0.047045 | 1.76 | 40 | 82 | 0.29859 | 6.2 | 13 | 27 | 0.05961 | 5.05 | |
×6 | 9 | 19 | 0.053913 | 3.79 | 48 | 98 | 0.39773 | 8.52 | 15 | 31 | 0.099451 | 1.68 | |
50,000 | ×1 | 21 | 44 | 0.36637 | 4 | 7 | 16 | 0.18304 | 9.46 | 8 | 18 | 0.10205 | 5.7 |
×2 | 17 | 35 | 0.2732 | 8.95 | 28 | 58 | 0.70837 | 7.57 | 19 | 39 | 0.23808 | 1.91 | |
×3 | 22 | 46 | 0.41411 | 5.57 | 8 | 18 | 0.19757 | 2.69 | 6 | 13 | 0.098579 | 5.85 | |
×4 | 12 | 26 | 0.25077 | 8.19 | 26 | 54 | 0.59532 | 1.44 | 15 | 32 | 0.26854 | 1.64 | |
×5 | 8 | 18 | 0.13834 | 3.89 | 37 | 76 | 0.93297 | 7.23 | 13 | 28 | 0.1878 | 7.17 | |
×6 | 9 | 19 | 0.15433 | 6.75 | 48 | 98 | 1.3436 | 6.36 | 16 | 34 | 0.31217 | 3.47 | |
100,000 | ×1 | 21 | 44 | 0.62111 | 5.66 | 7 | 16 | 0.21426 | 8.58 | 8 | 18 | 0.19648 | 8.06 |
×2 | 17 | 36 | 0.60434 | 1 | 35 | 72 | 1.0326 | 7.61 | 12 | 26 | 0.31084 | 5.07 | |
×3 | 22 | 46 | 0.6102 | 7.88 | 8 | 18 | 0.34764 | 3.81 | 6 | 13 | 0.1247 | 8.28 | |
×4 | 14 | 30 | 0.42957 | 9.3 | 29 | 60 | 0.87375 | 5.25 | 15 | 31 | 0.32466 | 1.28 | |
×5 | 8 | 18 | 0.26303 | 5.49 | 35 | 72 | 1.2043 | 4.43 | 13 | 28 | 0.40534 | 1.01 | |
×6 | 8 | 18 | 0.25233 | 1.83 | 41 | 84 | 1.4854 | 6.97 | 13 | 28 | 0.41283 | 9.35 |
Problem 5 | DFSR1 | PDY | HCGP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | ×1 | 1 | 3 | 0.002308 | 0 | 16 | 34 | 0.019027 | 8.17 | 6 | 13 | 0.004866 | 3.87 |
×2 | 1 | 3 | 0.002296 | 2.22 | 15 | 31 | 0.011457 | 7.97 | 1 | 3 | 0.002889 | 3.14 | |
×3 | 1 | 3 | 0.001798 | 0 | 18 | 38 | 0.011605 | 8.51 | 1 | 3 | 0.001549 | 0 | |
×4 | 6 | 13 | 0.003828 | 0 | 17 | 36 | 0.012113 | 4.98 | 9 | 20 | 0.008859 | 5.86 | |
×5 | 61 | 123 | 0.075739 | 8.25 | 19 | 40 | 0.032744 | 4.77 | 14 | 30 | 0.014831 | 2.7 | |
×6 | 60 | 121 | 0.026541 | 9.82 | 19 | 40 | 0.042873 | 4.22 | 15 | 31 | 0.009647 | 4.8 | |
5000 | ×1 | 1 | 3 | 0.007539 | 0 | 17 | 36 | 0.12849 | 6.85 | 6 | 13 | 0.023056 | 8.66 |
×2 | 1 | 3 | 0.005604 | 2.22 | 15 | 31 | 0.076005 | 7.97 | 1 | 3 | 0.004773 | 3.14 | |
×3 | 1 | 3 | 0.005712 | 0 | 20 | 42 | 0.058499 | 8.59 | 1 | 3 | 0.004512 | 0 | |
×4 | 6 | 13 | 0.010185 | 0 | 17 | 36 | 0.048496 | 4.99 | 7 | 15 | 0.015412 | 0 | |
×5 | 64 | 129 | 0.19584 | 8.14 | 20 | 42 | 0.058435 | 4.02 | 15 | 31 | 0.037637 | 1.23 | |
×6 | 64 | 129 | 0.15052 | 7.9 | 20 | 42 | 0.051701 | 3.98 | 16 | 33 | 0.040346 | 7.64 | |
10,000 | ×1 | 1 | 3 | 0.020364 | 0 | 17 | 36 | 0.18164 | 9.69 | 6 | 14 | 0.04793 | 4.59 |
×2 | 1 | 3 | 0.008206 | 2.22 | 15 | 31 | 0.081092 | 7.97 | 1 | 3 | 0.006498 | 3.14 | |
×3 | 1 | 3 | 0.014966 | 0 | 21 | 44 | 0.28984 | 4.56 | 1 | 3 | 0.005154 | 0 | |
×4 | 6 | 13 | 0.033961 | 0 | 17 | 36 | 0.1958 | 4.99 | 11 | 23 | 0.047613 | 4.06 | |
×5 | 65 | 131 | 0.40617 | 8.75 | 20 | 42 | 0.097809 | 5.69 | 15 | 31 | 0.068584 | 3.8 | |
×6 | 65 | 131 | 0.36916 | 8.77 | 20 | 42 | 0.09549 | 5.5 | 14 | 29 | 0.058668 | 1.06 | |
50,000 | ×1 | 1 | 3 | 0.030717 | 0 | 18 | 38 | 0.47586 | 8.13 | 7 | 15 | 0.16787 | 1.71 |
×2 | 1 | 3 | 0.024848 | 2.22 | 15 | 31 | 0.53998 | 7.97 | 1 | 3 | 0.017653 | 3.14 | |
×3 | 1 | 3 | 0.039588 | 0 | 23 | 48 | 0.81555 | 9.93 | 1 | 3 | 0.016797 | 0 | |
×4 | 6 | 13 | 0.11358 | 0 | 17 | 36 | 0.34906 | 4.99 | 11 | 23 | 0.1745 | 7.52 | |
×5 | 68 | 137 | 1.5711 | 8.55 | 20 | 42 | 0.46878 | 7.76 | 15 | 31 | 0.25982 | 7.56 | |
×6 | 68 | 137 | 1.4454 | 8.59 | 20 | 42 | 0.36411 | 7.74 | 15 | 31 | 0.24661 | 2.61 | |
100,000 | ×1 | 1 | 3 | 0.052007 | 0 | 19 | 40 | 1.222 | 4.31 | 7 | 15 | 0.19357 | 2.42 |
×2 | 1 | 3 | 0.046685 | 2.22 | 15 | 31 | 0.50666 | 7.97 | 1 | 3 | 0.039055 | 3.14 | |
×3 | 1 | 3 | 0.066953 | 0 | 27 | 56 | 1.7894 | 4.72 | 1 | 3 | 0.031785 | 0 | |
×4 | 6 | 13 | 0.29814 | 0 | 17 | 36 | 0.56445 | 4.99 | 11 | 23 | 0.38384 | 7.66 | |
×5 | 69 | 139 | 2.4612 | 9.17 | 21 | 44 | 0.96169 | 4.11 | 15 | 32 | 0.62553 | 3.75 | |
×6 | 69 | 139 | 2.4641 | 9.1 | 21 | 44 | 1.2645 | 4.12 | 15 | 31 | 0.49338 | 8.85 |
Problem 6 | DFSR1 | PDY | HCGP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | ×1 | 44 | 89 | 0.030153 | 7.26 | 139 | 280 | 0.081433 | 9.73 | 66 | 134 | 0.02907 | 7.63 |
×2 | 33 | 68 | 0.024583 | 7.28 | 187 | 376 | 0.087243 | 8.84 | 36 | 74 | 0.015563 | 6.67 | |
×3 | 47 | 96 | 0.033269 | 8.6 | 227 | 456 | 0.10668 | 9.23 | 55 | 112 | 0.021233 | 6.9 | |
×4 | 43 | 88 | 0.02823 | 8.87 | 218 | 438 | 0.099353 | 9.53 | 42 | 86 | 0.041643 | 8.78 | |
×5 | 52 | 106 | 0.032009 | 7.35 | 233 | 468 | 0.24766 | 9.99 | 43 | 88 | 0.023054 | 6.11 | |
×6 | 65 | 132 | 0.10119 | 8.51 | 189 | 380 | 0.12749 | 9.71 | 58 | 118 | 0.031802 | 7.64 | |
5000 | ×1 | 47 | 96 | 0.18102 | 6.5 | 188 | 378 | 0.70868 | 8.86 | 81 | 164 | 0.17259 | 8.38 |
×2 | 33 | 68 | 0.11644 | 7.28 | 187 | 376 | 0.66593 | 8.84 | 36 | 74 | 0.078733 | 6.67 | |
×3 | 47 | 96 | 0.17374 | 9.37 | 277 | 556 | 1.0654 | 9.68 | 58 | 118 | 0.16663 | 6.21 | |
×4 | 39 | 80 | 0.15158 | 9.6 | 218 | 438 | 0.77647 | 9.56 | 42 | 86 | 0.1127 | 8.8 | |
×5 | 55 | 112 | 0.32966 | 7.8 | 181 | 364 | 0.76163 | 9.64 | 91 | 184 | 0.2795 | 8.56 | |
×6 | 72 | 146 | 0.27598 | 9.32 | 200 | 402 | 0.80518 | 9.59 | 62 | 126 | 0.15663 | 5.8 | |
10,000 | ×1 | 47 | 96 | 0.40311 | 8.96 | 193 | 388 | 1.5151 | 9.37 | 82 | 166 | 0.44199 | 7.28 |
×2 | 33 | 68 | 0.25323 | 7.28 | 187 | 376 | 1.3113 | 8.84 | 36 | 74 | 0.21537 | 6.67 | |
×3 | 54 | 110 | 0.40319 | 7.71 | 220 | 442 | 1.6456 | 9.39 | 45 | 92 | 0.23366 | 9.4 | |
×4 | 40 | 82 | 0.29423 | 8.61 | 218 | 438 | 1.1552 | 9.56 | 42 | 86 | 0.22799 | 8.8 | |
×5 | 65 | 132 | 0.56744 | 9.45 | 232 | 466 | 2.0015 | 9.66 | 99 | 200 | 0.53545 | 6.52 | |
×6 | 61 | 124 | 0.46567 | 7.27 | 204 | 410 | 1.4589 | 9.71 | 62 | 126 | 0.33344 | 7.97 | |
50,000 | ×1 | 35 | 71 | 1.083 | 9.99 | 190 | 382 | 4.9906 | 9.44 | 94 | 189 | 1.8118 | 9.9 |
×2 | 33 | 68 | 1.0053 | 7.28 | 187 | 376 | 4.717 | 8.84 | 36 | 74 | 0.67027 | 6.67 | |
×3 | 33 | 68 | 0.82318 | 7.4 | 233 | 468 | 5.453 | 9.9 | 46 | 94 | 0.95285 | 8.25 | |
×4 | 38 | 78 | 1.045 | 8.75 | 218 | 438 | 4.8288 | 9.56 | 42 | 86 | 0.78167 | 8.8 | |
×5 | 66 | 134 | 1.9521 | 6.95 | 238 | 478 | 5.8409 | 9.93 | 105 | 212 | 2.1204 | 6.84 | |
×6 | 75 | 152 | 2.031 | 8.46 | 208 | 418 | 5.3067 | 9.27 | 66 | 134 | 1.2361 | 5.7 | |
100,000 | ×1 | 46 | 94 | 2.2128 | 8.51 | 197 | 396 | 8.3395 | 9.98 | 92 | 186 | 3.3487 | 6.48 |
×2 | 33 | 68 | 1.6353 | 7.28 | 187 | 376 | 7.4252 | 8.84 | 36 | 74 | 1.2983 | 6.67 | |
×3 | 53 | 108 | 2.2467 | 9.03 | 184 | 370 | 7.5987 | 9.73 | 46 | 94 | 1.5285 | 6.79 | |
×4 | 35 | 72 | 1.4249 | 8.8 | 218 | 438 | 9.1582 | 9.56 | 42 | 86 | 1.5365 | 8.8 | |
×5 | 59 | 120 | 2.6404 | 7.84 | 257 | 516 | 11.1628 | 9.96 | 130 | 262 | 5.2584 | 6.39 | |
×6 | 84 | 170 | 3.6204 | 7.37 | 206 | 414 | 9.6512 | 9.17 | 66 | 134 | 2.1315 | 8.17 |
Problem 7 | DFSR1 | PDY | HCGP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | ×1 | 61 | 123 | 0.023673 | 9.91 | 225 | 452 | 0.12358 | 9.68 | 154 | 310 | 0.063765 | 9.18 |
×2 | 50 | 102 | 0.021414 | 7.3 | 205 | 412 | 0.11853 | 9.84 | 149 | 300 | 0.040999 | 8.68 | |
×3 | 69 | 140 | 0.026574 | 7.38 | 152 | 306 | 0.10356 | 9.82 | 104 | 210 | 0.028425 | 9.8 | |
×4 | 54 | 110 | 0.021371 | 9.54 | 226 | 454 | 0.10959 | 9.59 | 145 | 292 | 0.040416 | 8.83 | |
×5 | 45 | 92 | 0.017501 | 9.38 | 204 | 410 | 0.087927 | 9.77 | 148 | 298 | 0.042045 | 9.49 | |
×6 | 73 | 148 | 0.030156 | 8.61 | 325 | 652 | 0.16361 | 9.68 | 238 | 478 | 0.080769 | 9.94 | |
5000 | ×1 | 57 | 116 | 0.17496 | 9 | 208 | 418 | 0.37694 | 9.98 | 151 | 304 | 0.27362 | 9 |
×2 | 65 | 132 | 0.14268 | 9.6 | 208 | 418 | 0.44897 | 9.66 | 149 | 300 | 0.22391 | 8.85 | |
×3 | 59 | 120 | 0.12642 | 9.47 | 157 | 316 | 0.33535 | 9.77 | 108 | 218 | 0.1743 | 8.38 | |
×4 | 64 | 130 | 0.1561 | 8.9 | 202 | 406 | 0.44525 | 9.74 | 145 | 292 | 0.22877 | 9.89 | |
×5 | 66 | 134 | 0.14988 | 8.6 | 205 | 412 | 0.37069 | 9.48 | 145 | 292 | 0.39989 | 9.42 | |
×6 | 88 | 178 | 0.1901 | 8.22 | 345 | 692 | 0.9217 | 9.68 | 260 | 522 | 0.41205 | 9.17 | |
10,000 | ×1 | 51 | 103 | 0.31461 | 5.68 | 219 | 440 | 1.2146 | 9.71 | 150 | 302 | 0.61638 | 9.48 |
×2 | 55 | 112 | 0.29121 | 9.62 | 200 | 402 | 1.1583 | 9.98 | 145 | 292 | 0.63647 | 9.38 | |
×3 | 76 | 154 | 0.41032 | 9.63 | 148 | 298 | 0.78906 | 9.58 | 108 | 218 | 0.54539 | 8.86 | |
×4 | 66 | 134 | 0.35086 | 9.07 | 222 | 446 | 1.2542 | 9.6 | 142 | 286 | 0.63658 | 9.31 | |
×5 | 56 | 114 | 0.30977 | 7.82 | 197 | 396 | 1.1353 | 9.86 | 145 | 292 | 0.64456 | 9.89 | |
×6 | 86 | 174 | 0.5027 | 8.36 | 348 | 698 | 2.0085 | 9.91 | 268 | 538 | 1.2242 | 8.22 | |
50,000 | ×1 | 57 | 116 | 1.1288 | 9.51 | 204 | 410 | 3.8161 | 9.76 | 147 | 296 | 2.1916 | 9.65 |
×2 | 55 | 112 | 1.0816 | 9.99 | 201 | 404 | 3.6254 | 9.87 | 145 | 292 | 2.1226 | 9.5 | |
×3 | 74 | 150 | 1.4655 | 7.6 | 152 | 306 | 2.6166 | 9.9 | 104 | 210 | 1.5508 | 8.79 | |
×4 | 72 | 146 | 1.4134 | 9.83 | 198 | 398 | 2.9667 | 9.96 | 143 | 288 | 2.0497 | 9.18 | |
×5 | 68 | 138 | 1.3541 | 8.71 | 196 | 394 | 2.9459 | 9.62 | 142 | 286 | 1.8212 | 9.97 | |
×6 | 87 | 176 | 2.0557 | 7.86 | 364 | 730 | 5.3453 | 9.81 | 279 | 560 | 3.3756 | 9.43 | |
100,000 | ×1 | 65 | 132 | 2.8844 | 9.84 | 210 | 422 | 6.9991 | 9.9 | 147 | 296 | 3.6906 | 9.98 |
×2 | 65 | 132 | 2.6734 | 7.82 | 215 | 432 | 6.9132 | 1 | 146 | 294 | 3.7073 | 9.9 | |
×3 | 70 | 142 | 2.6297 | 8.73 | 155 | 312 | 5.2351 | 9.74 | 104 | 210 | 2.7255 | 9.15 | |
×4 | 61 | 124 | 2.2149 | 8.42 | 211 | 424 | 7.0719 | 9.6 | 142 | 286 | 3.5859 | 9.94 | |
×5 | 69 | 140 | 2.5933 | 8 | 212 | 426 | 6.8722 | 9.92 | 146 | 294 | 3.6764 | 8.11 | |
×6 | 102 | 206 | 3.9598 | 9.32 | 374 | 750 | 11.9519 | 9.55 | 288 | 578 | 7.2411 | 8.77 |
Problem 8 | DFSR1 | PDY | HCGP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | ×1 | 18 | 38 | 0.007958 | 9.14 | 5 | 12 | 0.035715 | 6.7 | 6 | 13 | 0.002637 | 7.39 |
×2 | 18 | 37 | 0.007423 | 4.41 | 56 | 114 | 0.022696 | 4.91 | 18 | 38 | 0.00669 | 2.4 | |
×3 | 19 | 40 | 0.012079 | 5.7 | 7 | 16 | 0.006145 | 3.73 | 7 | 15 | 0.002588 | 3.49 | |
×4 | 16 | 33 | 0.012515 | 7.78 | 53 | 108 | 0.033416 | 7.74 | 18 | 38 | 0.006571 | 2.09 | |
×5 | 26 | 53 | 0.011984 | 8.23 | 55 | 112 | 0.051453 | 9.95 | 20 | 42 | 0.009647 | 3.18 | |
×6 | 18 | 37 | 0.008318 | 7.92 | 65 | 132 | 0.038824 | 7.53 | 20 | 42 | 0.007383 | 5.83 | |
5000 | ×1 | 19 | 40 | 0.026268 | 8.15 | 6 | 14 | 0.017025 | 9.57 | 6 | 13 | 0.016436 | 1.65 |
×2 | 18 | 38 | 0.042577 | 7.68 | 44 | 90 | 0.10485 | 2.79 | 17 | 36 | 0.039178 | 2.35 | |
×3 | 20 | 42 | 0.090895 | 5.09 | 7 | 16 | 0.013239 | 8.34 | 7 | 15 | 0.014297 | 7.81 | |
×4 | 49 | 100 | 0.15176 | 9.77 | 43 | 88 | 0.16041 | 9.7 | 20 | 42 | 0.050196 | 2.3 | |
×5 | 18 | 38 | 0.042496 | 5.14 | 45 | 92 | 0.12203 | 8.5 | 23 | 47 | 0.049253 | 5.73 | |
×6 | 19 | 40 | 0.048408 | 9.02 | 77 | 156 | 0.2765 | 7.67 | 21 | 44 | 0.050957 | 2.39 | |
10,000 | ×1 | 20 | 42 | 0.10739 | 4.6 | 6 | 14 | 0.044056 | 1.35 | 6 | 13 | 0.021673 | 2.34 |
×2 | 34 | 70 | 0.14954 | 9.02 | 51 | 104 | 0.20259 | 3.85 | 19 | 40 | 0.077444 | 2.08 | |
×3 | 20 | 42 | 0.10281 | 7.2 | 8 | 18 | 0.036341 | 7.53 | 7 | 15 | 0.022822 | 1.1 | |
×4 | 60 | 121 | 0.33672 | 8.6 | 37 | 76 | 0.29144 | 5.71 | 20 | 42 | 0.14996 | 6.11 | |
×5 | 17 | 36 | 0.085697 | 8.71 | 44 | 90 | 0.21218 | 9.11 | 17 | 36 | 0.071395 | 3.08 | |
×6 | 20 | 42 | 0.1003 | 5.94 | 87 | 176 | 0.40799 | 7.95 | 22 | 46 | 0.12034 | 2.88 | |
50,000 | ×1 | 21 | 44 | 0.52854 | 4.11 | 6 | 14 | 0.095905 | 3.03 | 6 | 13 | 0.081578 | 5.22 |
×2 | 32 | 66 | 0.75814 | 8.53 | 46 | 94 | 1.1108 | 9.07 | 17 | 36 | 0.30372 | 2.58 | |
×3 | 21 | 44 | 0.39951 | 6.42 | 10 | 22 | 0.21688 | 1.43 | 7 | 15 | 0.093075 | 2.47 | |
×4 | 24 | 50 | 0.45453 | 6.22 | 56 | 114 | 1.1769 | 9.66 | 21 | 44 | 0.34356 | 7.02 | |
×5 | 18 | 38 | 0.36846 | 8.95 | 46 | 94 | 0.84367 | 7.11 | 21 | 44 | 0.42353 | 2.59 | |
×6 | 21 | 44 | 0.49905 | 9.61 | 96 | 194 | 1.8368 | 6.46 | 21 | 44 | 0.38195 | 5.7 | |
100,000 | ×1 | 21 | 44 | 0.81437 | 5.81 | 7 | 16 | 0.22941 | 3.45 | 6 | 13 | 0.14466 | 7.39 |
×2 | 34 | 70 | 1.3899 | 9.14 | 53 | 108 | 2.1976 | 8.8 | 19 | 40 | 0.66113 | 2.42 | |
×3 | 21 | 44 | 0.75336 | 9.08 | 12 | 26 | 0.46681 | 8.81 | 7 | 15 | 0.20851 | 3.49 | |
×4 | 18 | 38 | 0.68936 | 4.98 | 58 | 118 | 2.407 | 5.95 | 19 | 40 | 0.67528 | 1.64 | |
×5 | 18 | 37 | 0.5929 | 8.63 | 45 | 92 | 1.6446 | 8.52 | 22 | 46 | 0.64709 | 8.69 | |
×6 | 22 | 46 | 0.77784 | 7.98 | 108 | 218 | 3.8486 | 3.84 | 23 | 47 | 0.89078 | 6.62 |
DFSR1 | CGD | ||||||||
---|---|---|---|---|---|---|---|---|---|
Image | Size | ITER | TIME(s) | SNR | SSIM | ITER | TIME(s) | SNR | SSIM |
1st Image | 256 × 256 | 43 | 1.84 | 26.87 | 0.91 | 44 | 1.95 | 25.55 | 0.89 |
2nd Image | 256 × 256 | 52 | 3.53 | 19.23 | 0.81 | 52 | 3.52 | 17.94 | 0.74 |
3rd Image | 256 × 256 | 31 | 2.61 | 19.82 | 0.86 | 35 | 3.05 | 18.45 | 0.81 |
4th Image | 256 × 256 | 20 | 1.77 | 25.42 | 0.83 | 23 | 2.01 | 24.75 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awwal, A.M.; Ishaku, A.; Halilu, A.S.; Stanimirović, P.S.; Pakkaranang, N.; Panyanak, B. Descent Derivative-Free Method Involving Symmetric Rank-One Update for Solving Convex Constrained Nonlinear Monotone Equations and Application to Image Recovery. Symmetry 2022, 14, 2375. https://doi.org/10.3390/sym14112375
Awwal AM, Ishaku A, Halilu AS, Stanimirović PS, Pakkaranang N, Panyanak B. Descent Derivative-Free Method Involving Symmetric Rank-One Update for Solving Convex Constrained Nonlinear Monotone Equations and Application to Image Recovery. Symmetry. 2022; 14(11):2375. https://doi.org/10.3390/sym14112375
Chicago/Turabian StyleAwwal, Aliyu Muhammed, Adamu Ishaku, Abubakar Sani Halilu, Predrag S. Stanimirović, Nuttapol Pakkaranang, and Bancha Panyanak. 2022. "Descent Derivative-Free Method Involving Symmetric Rank-One Update for Solving Convex Constrained Nonlinear Monotone Equations and Application to Image Recovery" Symmetry 14, no. 11: 2375. https://doi.org/10.3390/sym14112375
APA StyleAwwal, A. M., Ishaku, A., Halilu, A. S., Stanimirović, P. S., Pakkaranang, N., & Panyanak, B. (2022). Descent Derivative-Free Method Involving Symmetric Rank-One Update for Solving Convex Constrained Nonlinear Monotone Equations and Application to Image Recovery. Symmetry, 14(11), 2375. https://doi.org/10.3390/sym14112375