Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT)
Abstract
:1. Introduction
2. General Solution
3. Fundamentals of Intuitionistic Fuzzy Normed Spaces
4. Stability Results: Direct Method
5. Stability Results: Fixed Point Method
6. Applications of the Euler–Lagrange Symmetry Additive Functional Equation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brzdęk, J.; El-hady, E.; Förg-Rob, W.; Leśniak, Z. A note on solutions of a functional equation arising in a queuing model for a LAN gateway. Aequationes Math. 2016, 90, 671–681. [Google Scholar] [CrossRef] [Green Version]
- El-hady, E.; Brzd˛ek, J.; Nassar, H. On the structure and solutions of functional equations arising from queueing models. Aequationes Math. 2017, 91, 445–477. [Google Scholar] [CrossRef] [Green Version]
- El-hady, E.; Förg-Rob, W.; Nassar, H. On a functional equation arising from a network model. Appl. Math. 2017, 11, 363–372. [Google Scholar] [CrossRef]
- Aiemsomboon, L.; Sintunavarat, W. On a new type of stability of a radical quadratic functional equation using Brzdek’s fixed point theorem. Acta Math. Hung. 2016, 151, 35–46. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Ghazanfari, A.G. On the stability of a radical cubic functional equation in quasi-β spaces. J. Fixed Point Theory Appl. 2016, 18, 843–853. [Google Scholar] [CrossRef]
- Almahalebi, M.; Chahbi, A. Approximate solution of P-radical functional equation in 2-Banach spaces. Acta Math. Sci. 2019, 39, 551–566. [Google Scholar] [CrossRef]
- EL-Fassi, I.I. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. Mat. 2019, 113, 675–687. [Google Scholar] [CrossRef]
- Guariglia, E.; Tamilvanan, K. On the stability of radical septic functional equations. Mathematics 2020, 8, 2229. [Google Scholar] [CrossRef]
- Ulam, S.M. Problems in Modern Mathematics, Science, ed.; Some Questions in Analysis: 1, Stability; Wiley: New York, NY, USA, 1964; Chapter VI. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gǎvrutǎ, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Debnath, P.; Konwar, N.; Radenovic, S. Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Sciences. In Forum for Interdisciplinary Mathematics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Todorcevic, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Cho, Y.J.; Jleli, M.; Mursaleen, M.; Samet, B.; Vetro, C. Advances in Metric Fixed Point Theory and Applications; Springer: Singapore, 2021. [Google Scholar]
- Brzdęk, J.; Ciepliński, K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math. Sci. 2018, 38, 377–390. [Google Scholar] [CrossRef]
- Brzdęk, J.; Cădariu, L.; Ciepliński, K. Fixed point theory and the Ulam stability. J. Funct. Spaces 2014, 2014, 829419. [Google Scholar] [CrossRef] [Green Version]
- Kannappan, P.L. Quadratic functional equation inner product spaces. Results Math. 1995, 27, 368–372. [Google Scholar] [CrossRef]
- Rassias, J.M. On the stability of the Euler-Lagrange functional equation. Chin. J. Math. 1992, 20, 185–190. [Google Scholar]
- Rassias, J.M. On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces. J. Math. Phys. Sci. 1994, 28, 231–235. [Google Scholar]
- Rassias, J.M. On the stability of the general Euler-Lagrange functional equation. Demonstr. Math. 1996, 29, 755–766. [Google Scholar]
- Rassias, J.M. Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings. J. Math. Anal. Appl. 1998, 220, 613–639. [Google Scholar] [CrossRef] [Green Version]
- Rassias, J.M. On the stability of the multi-dimensional Euler-Lagrange functional equation. J. Indian Math. Soc. 1999, 66, 1–9. [Google Scholar]
- Mihet, D.; Saadati, R. On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 2011, 24, 2005–2009. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Chang, I.S.; Son, E. Stability of Cauchy additive functional equation in Fuzzy Banach Spaces. Math. Inequalities Appl. 2013, 16, 1123–1136. [Google Scholar] [CrossRef] [Green Version]
- Baktash, E.; Cho, Y.J.; Jalili, M.; Saadati, R.; Vaezpour, S.M. On the stability of cubic mappings and quartic mappings in random normed spaces. J. Ineq. App. 2008, 2008, 902187. [Google Scholar]
- Ghaffari, A.; Alinejad, A. Stabilities of cubic mappings in fuzzy normed spaces. Adv. Diff. Equ. 2010, 2010, 150873. [Google Scholar] [CrossRef]
- Saha, P.; Samanta, T.K.; Mondal, P.; Choudhury, B.S.; De La Sen, M. Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces. Mathematics 2020, 8, 974. [Google Scholar] [CrossRef]
- Alanazi, A.M.; Muhiuddin, G.; Tamilvanan, K.; Alenze, E.N.; Ebaid, A.; Loganathan, K. Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods. Mathematics 2020, 8, 1050. [Google Scholar] [CrossRef]
- Madadi, M.; Saadati, R.; De la Sen, M. Stability of Unbounded Differential Equations in Menger k-Normed Spaces: A Fixed Point Technique. Mathematics 2020, 8, 400. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Fečkan, M.; Wang, J. A Fixed-Point Approach to the Hyers–Ulam Stability of Caputo–Fabrizio Fractional Differential Equations. Mathematics 2020, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, A.G.M.; Dhineshbabu, R.; Kaabar, M.K. The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation. Symmetry 2021, 13, 789. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzd˛ek, J.; El-hady, E.; Lesniak, Z. On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey. Symmetry 2021, 13, 2200. [Google Scholar] [CrossRef]
- Tamilvanan, K.; Alanazi, A.M.; Rassias, J.M.; Alkhaldi, A.H. Ulam Stabilities and Instabilities of Euler–Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces. Mathematics 2021, 9, 3063. [Google Scholar] [CrossRef]
- Govindan, V.; Lupas, A.A.; Noeiaghdam, S. Stability of Additive Functional Equation Originating from Characteristic Polynomial of Degree Three. Symmetry 2022, 14, 700. [Google Scholar] [CrossRef]
- Lupas, A.A. Symmetry in Functional Equations and Analytic Inequalities II. Symmetry 2022, 14, 268. [Google Scholar] [CrossRef]
- El-Hady, E.S.; El-Fassi, I.I. Stability of the Equation of q-Wright Affine Functions in Non-Archimedean (n,β)-Banach Spaces. Symmetry 2022, 14, 633. [Google Scholar] [CrossRef]
- Uthirasamy, N.; Tamilvanan, K.; Kabeto, M.J. Ulam stability and nonstability of additive functional equation in IFN-spaces and 2-Banach spaces by different methods. J. Funct. Spaces 2022, 2022, 8028634. [Google Scholar]
- Agilan, P.; Julietraja, K.; Fatima, N.; Vallinayagam, V.; Mlaiki, N.; Souayah, N. Direct and Fixed-Point Stability–Instability of Additive Functional Equation in Banach and Quasi-Beta Normed Spaces. Symmetry 2022, 14, 1700. [Google Scholar] [CrossRef]
- Rasham, T.; Shoaib, A.; Park, C.; Agarwal, R.P.; Aydi, H. On a pair of fuzzy mappings in modular-like metric spaces with applications. Adv. Differ. Equations 2021, 2021, 245. [Google Scholar] [CrossRef]
- Rasham, T.; Marino, G.; Shahzad, A.; Park, C.; Shoaib, A. Fixed point results for a pair of fuzzy mappings and related applications in b- metric like spaces. Adv. Differ. Equations 2021, 2021, 259. [Google Scholar] [CrossRef]
- Rasham, T.; Asif, A.; Aydi, H.; De La Sen, M. On pairs of fuzzy dominated mappings and applications. Adv. Differ. Equations 2021, 2021, 417. [Google Scholar] [CrossRef]
- Rasham, T.; Shabbir, M.S.; Agarwal, P.; Momani, S. On a pair of fuzzy dominated mappings on closed ball in the multiplicative metric space with applications. Fuzzy Sets Syst. 2021, 437, 81–96. [Google Scholar] [CrossRef]
- Shazad, A.; Rasham, T.; Marino, G.; Shoaib, A. On fixed point results for α ∗-ψ-dominated fuzzy contractive mappings with graph. J. Intell. Fuzzy Syst. 2020, 38, 3093–3103. [Google Scholar] [CrossRef]
- Rasham, T.; Nazam, M.; Aydi, H.; Shoaib, A.; Park, C.; Lee, J.R. Hybrid pair of multivalued mappings in modular-like metric spaces and applications. AIMS Math. 2022, 7, 10582–10595. [Google Scholar] [CrossRef]
- Rasham, T.; Agarwal, P.; Abbasi, L.S.; Jain, S. A study of some new multivalued fixed point results in a modular like metric space with graph. J. Anal. 2022, 30, 833–844. [Google Scholar] [CrossRef]
- Beg, I.; Gupta, V.; Kanwar, A. Fixed points on intuitionistic fuzzy metric spaces using the E.A. property. J. Nonlinear Funct. Anal. 2015, 2015, 20. [Google Scholar]
- Bodaghi, A. Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations. J. Intel. Fuzzy Syst 2016, 2309, 2317. [Google Scholar] [CrossRef]
- Bodaghi, A.; Park, C.; Rassias, J.M. Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces. Commun. Korean Math. Soc. 2016, 31, 729–743. [Google Scholar] [CrossRef] [Green Version]
- SMohiuddine, A.; Lohani, Q.M.D. On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos Solitons Fractals 2009, 42, 731–1737. [Google Scholar]
- Mursaleen, M.; Mohiuddine, S.A. On stability of a cubic functional equation in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals. 2009, 42, 2997–3005. [Google Scholar] [CrossRef]
- Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
- Saadati, R.; Park, J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Saadati, R.; Sedghi, S.; Shobe, N. Modified intuitionistic fuzzy metric spaces and some fxed point theorems. Chaos Solitons Fractals 2008, 38, 36–47. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Margolis, B.; Diaz, J.B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 126, 305–309. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agilan, P.; Julietraja, K.; Mlaiki, N.; Mukheimer, A. Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT). Symmetry 2022, 14, 2454. https://doi.org/10.3390/sym14112454
Agilan P, Julietraja K, Mlaiki N, Mukheimer A. Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT). Symmetry. 2022; 14(11):2454. https://doi.org/10.3390/sym14112454
Chicago/Turabian StyleAgilan, P., K. Julietraja, Nabil Mlaiki, and Aiman Mukheimer. 2022. "Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT)" Symmetry 14, no. 11: 2454. https://doi.org/10.3390/sym14112454
APA StyleAgilan, P., Julietraja, K., Mlaiki, N., & Mukheimer, A. (2022). Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT). Symmetry, 14(11), 2454. https://doi.org/10.3390/sym14112454