Next Article in Journal
Cross-Layer Optimization-Based Asymmetric Medical Video Transmission in IoT Systems
Previous Article in Journal
Design of the Algorithm for Packaging of Water Molecules in a Fixed Volume
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT)

1
Department of Mathematics, St. Joseph’s College of Engineering, OMR, Chennai 600119, Tamil Nadu, India
2
Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(11), 2454; https://doi.org/10.3390/sym14112454
Submission received: 8 October 2022 / Revised: 12 November 2022 / Accepted: 16 November 2022 / Published: 19 November 2022
(This article belongs to the Section Mathematics)

Abstract

:
In this article, a new class of real-valued Euler–Lagrange symmetry additive functional equations is introduced. The solution of the equation is provided, assuming the unknown function to be continuous and without any regularity conditions. The objective of this research is to derive the Hyers–Ulam–Rassias stability (HURS) in intuitionistic fuzzy normed spaces (IFNS) by applying the classical direct method and fixed point techniques (FPT). Furthermore, it is proven that the Euler–Lagrange symmetry additive functional equation and the control function, which is the IFNS of the sums and products of powers of norms, is stable. In addition, a few examples where the solution of this equation can be applied in Fourier series and Fourier transforms are demonstrated.

1. Introduction

The study of functional equations is one of the most important aspects of modern research and it is becoming an increasingly popular topic among academics all over the world. As functional equations may be used in a diverse array of contexts, an increasing number of empirical researchers and mathematicians are directing their attentions on studying them. The study of functional equations in a variety of domains, including differential equations, differential geometry, queueing theory, probability theory, abstract algebra, and number theory has led to an increase in the significance of functional equations [1,2,3].
The stability of equations is essential because it gives a helpful approach to estimating the error that is introduced when exact solutions are substituted for functions that fulfil some equations approximately. Modern mathematicians state that an equation is stable within a specific type of function if every function in that category that significantly fulfils the equation is close to the optimal solution of the equation. Mathematicians have investigated quite a number of stability problems with diverse functional equations (radical, reciprocal, logarithmic, and algebraic) in recent times [4,5,6,7,8].
Ulam [9] posed a significant problem regarding the stability of group homomorphisms in 1940. Hyers [10] found a solution to the problem for the Cauchy additive functional equation in the subsequent year. Rassias [11] generalised Hyers’ result after more than two decades, and Gavruta [12] then expanded Rassias’ result by introducing unbounded control functions. Today, the term “generalised HURS” of functional equations is commonly used to refer to the stability notion developed by Rassias and Gavruta. The Ulam stability analysis can be studied using a number of different approaches, but one of the most well-known is the FPT, which invokes a central result from fixed point theory [13,14,15,16,17].
The symmetry properties of functions used to define an equation or an inequality can be studied in order to determine the solutions with particular properties. As far as inequalities are concerned, the study of special functions such as hypergeometric functions and special polynomials based on their symmetry properties may provide some interesting outcomes. The symmetry properties for different types of operators associated with the concept of quantum functional calculus may also be investigated.
The functional equation
Y ( θ 1 + θ 2 ) + Y ( θ 1 θ 2 ) = 2 Y ( θ 1 ) + 2 Y ( θ 2 )
is related to a symmetric bi-additive mapping [18]. It is natural that this equation is called a quadratic functional equation. In particular, every solution of the quadratic Equation ( 1 ) is said to be a quadratic mapping. It is well-known that a mapping Y between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive mapping B such that Y ( θ ) = B ( θ 1 , θ 2 ) for all Y . The bi-additive mapping B is given by
B ( θ 1 , θ 2 ) = 1 4 [ Y ( θ 1 + θ 2 ) Y ( θ 1 θ 2 ) ] .
Rassias introduced a variety of Euler–Lagrange functional equations [19,20,21,22,23] and established the HURS.
The HURS of the Cauchy functional equation (CFE), defined as
Y ( θ 1 + θ 2 ) = Y ( θ 1 ) + Y ( θ 2 )
in random normed spaces was studied by Mihet et al. [24].
Kim et al. [25] proposed a generalised version of CFE, as follows:
Y θ 1 θ 2 n + θ 3 + Y θ 2 θ 3 n + θ 1 + Y θ 3 θ 1 n + θ 2 = Y ( θ 1 + θ 2 + θ 3 ) .
In addition, Kim et al. determined the Ulam stability in fuzzy normed spaces for any non-zero fixed integer n. Firstly, it is self-evident that a function Y satisfies the given equation if and only if it is additive. Consequently, the equation is known as the CFE. Baktash et al. [26] addressed the stability of cubic and quartic mappings in random normed spaces, and Ghaffari et al. [27] demonstrated the stability of cubic mappings in fuzzy normed spaces.
In the year 2020, Saha et al. [28] applied fixed point techniques to stability problems in intuitionistic fuzzy Banach spaces. In the same year, Alanazi et al. [29] proved the fuzzy stability results of a finite variable additive functional equation using direct and fixed point methods. Madadi et al. [30] published ground-breaking work on the stability of unbounded differential equations in Menger k-normed spaces using a fixed point technique. Liu et al. [31] presented a fixed-point approach to the Hyers–Ulam stability (HUS) of Caputo–Fabrizio fractional differential equations.
In the year 2021, Badora et al. [32] studied the applications of the Banach limit in Ulam stability. Subsequently, Alzabut et al. [33] derived the existence, uniqueness, and stability analysis of the discrete fractional three-point boundary value problem for the elastic beam equation. Bahyrycz et al. [34] presented a survey on the Ulam stability of functional equations in two-normed spaces. Tamilvanan et al. [35] investigated the Ulam stabilities and instabilities of the Euler–Lagrange–Rassias quadratic functional equation in non-Archimedean IFNS.
In 2022, Govindan et al. [36] derived the stability of an additive functional equation originating from the characteristic polynomial of degree three. Lupas [37] presented a summary of symmetry in functional equations and analytic inequalities. El-Hady et al. [38] studied the stability of the equation of q-wright affine functions in non-Archimedean ( n , β ) -Banach Spaces. Uthirasamy et.al [39] derived the Ulam stability and nonstability of additive functional equations in IFNS and two-Banach spaces using different methods.
Quite recently, Agilan et al. [40] investigated the generalised HUS of an additive functional equation
Y η + γ + η ħ κ + Y η + κ + η ħ μ + η + Y ( γ κ ) + η ħ Y ( κ μ ) = 2 η + Y ( γ ) + η ħ Y ( κ )
with η + , η ħ 0 in Banach spaces and quasi β -normed spaces using direct and FPT. The counter example for non-stable cases is also demonstrated. A few more results on applying the fixed point techniques on fuzzy and dominated mappings are presented in [41,42,43,44,45,46,47].
Extending the above research, a new class of real-valued Euler–Lagrange symmetry additive functional equations is introduced in this article, and the generalised HURS of various general control functions of this equation are established. The unique approach of analysis of the HURS for this class of equations using two different techniques has not been performed before. Hence, the results presented in the upcoming sections are novel and significant in the study of functional equations.
The Euler–Lagrange symmetry additive functional equation introduced in this article is defined as follows:
ς + + ħ Z ς p + q + ħ r + ς Z ħ p q + Z ς ħ q r + ħ Z ς r p = ς + + ħ ς Z p + Z q + ħ Z r
where ς , , ħ R , with ς , , ħ 0 and ς + + ħ 0 in IFNS using direct and FPT.
In the following section, the general solution of the above equation is derived and discussed. In Section 3, some basics concepts and notations related to IFNS are explained briefly. In Section 4 and Section 5, the stability results are derived using the direct and fixed point techniques, respectively. In Section 6, the applications of the proposed equation are analysed using Fourier series and Fourier transform over various intervals.

2. General Solution

In this section, the solution of the Euler–Lagrange symmetry additive functional equation is discussed.
Lemma 1.
Let A , B be non-empty sets, and let the mapping Z : A B satisfy the additive Cauchy equation with Z ( 0 ) = 0
Z ( θ 1 + θ 2 ) = Z ( θ 1 ) + Z ( θ 2 ) .
If θ 1 , θ 2 A and if Z : A B satisfies the functional equation, then
ς + + ħ Z ς p + q + ħ r + ς Z ħ p q + Z ς ħ q r + ħ Z ς r p = ς + + ħ ς Z p + Z q + ħ Z r
for all p , q , r A .
Proof
Let A , B be non-empty sets and the mapping Z : A B . From (3), the following conditions are derived:
(1)
θ 1 = θ 2 = 0 in (3) Z ( 0 ) = 0 ;
(2)
θ 1 = θ 2 in (3) Z ( θ 2 ) = Z ( θ 2 ) then Z is odd;
(3)
θ 2 = θ 1 , 2 θ 1 in (3) Z ( 2 θ 1 ) = 2 Z ( θ 1 ) , Z ( 3 θ 1 ) = 3 Z ( θ 1 ) ;
(4)
In general, Z ( a θ 1 ) = a Z ( θ 1 ) , for any a.
From (3)
Z ( θ 1 + θ 2 + θ 3 ) = Z ( θ 1 ) + Z ( θ 2 ) + Z ( θ 3 ) .
Replacing ( θ 1 , θ 2 , θ 3 ) by ς p , q , ħ r in (3) and using condition ( 4 ) ,
Z ς p + q + ħ r = ς Z p + Z q + ħ Z r .
Multiplying (6) by ς + + ħ ,
ς + + ħ Z ς p + q + ħ r = ς + + ħ ς Z p + Z q + ħ Z r .
Replacing ( θ 1 , θ 2 ) by ħ p , ħ q in (3) and by (4)
Z ħ p q = ħ Z p + ħ Z q .
Multiplying by ς in (8), and by (2), the following result is obtained.
ς Z ħ p q = ς ħ Z p ς ħ Z q .
Replacing ( θ 1 , θ 2 ) by ( ς ħ q , ς ħ r ) in (3), and by (4),
Z ς ħ q r = ς ħ Z q + ς ħ Z r .
Multiplying by in (10) and applying condition (2),
Z ς ħ q r = ς ħ Z q ς ħ Z r .
Replacing ( θ 1 , θ 2 ) by ( ς r ς p ) in (3), and using condition (4),
Z ς r p = ς Z r + ς Z p .
Multiplying by ħ on both sides of (10) and by condition (2), the following result is obtained.
ħ Z ς r p = ħ ς Z r ħ ς Z p .
Finally, adding these derived Equations (7), (9), (11), and (13), Equation (4) can be obtained. □

3. Fundamentals of Intuitionistic Fuzzy Normed Spaces

The basic definitions and notations in the context of IFNS are provided in [48,49,50,51,52,53,54,55,56].
Definition 1.
The five-tuple ( A , μ a , ν a , , ) is said to be an IFNS if A is a vector space, ∗ is a continuous κ-norm, ⋄ is a continuous κ conorm, and μ , ν are fuzzy sets on A × ( 0 , ) satisfying the following conditions. For every p , q A and s , κ > 0 ,
(A1) μ a ( p , κ ) + ν a ( p , κ ) 1 ,
(A2) μ a ( p , κ ) > 0 ,
(A3) μ a ( p , κ ) = 1 , if and only if p = 0 ,
(A4) μ a ( α p , κ ) = μ a p , κ | α | for each α 0 ,
(A5) μ a ( p , κ ) μ a ( q , s ) μ a ( p + q , κ + s ) ,
(A6) μ a ( p , · ) : ( 0 , ) [ 0 , 1 ] is continuous,
(A7) lim κ μ a ( p , κ ) = 1 and lim κ 0 μ a ( p , κ ) = 0 ,
(A8) ν a ( p , κ ) < 1 ,
(A9) ν a ( p , κ ) = 0 , if and only if p = 0 ,
(A10) ν a ( α p , κ ) = ν p , κ | α | for each α 0 ,
(A11 ) ν a ( p , κ ) ν a ( q , s ) ν a ( p + q , κ + s ) ,
(A12) ν a ( p , · ) : ( 0 , ) [ 0 , 1 ] is continuous,
(A13) lim κ ν a ( p , κ ) = 0 and lim κ 0 ν a ( p , κ ) = 1 .
Example 1.
Let A , · be a normed space. Let a b = a b and a b = min a + b , 1 for all a , b [ 0 , 1 ] . For all p A and every κ > 0 , consider
μ ( p , κ ) = κ κ + p i f κ > 0 ; 0 i f κ 0 ; a n d ν ( p , κ ) = p κ + p i f κ > 0 ; 0 i f κ 0 .
Then, A , μ a , ν a , , is an IFNS.

4. Stability Results: Direct Method

Let A be a linear space and B , μ a , ν a be an IFNS. Then,
H Z ς ħ p q r ( p , q , r ) = ς + + ħ Z ς p + q + ħ r + ς Z ħ p q + Z ς ħ q r + ħ Z ς r p ς + + ħ ς Z p + Z q + ħ Z r
where ς , , ħ R with ς , , ħ 0 for all p , q , r A .
Theorem 1.
Let A , B be non-empty sets, and Ψ : A × A × A B such that 0 < p ς + + ħ η < 1 . Then,
μ a Ψ ς + + ħ n η p , ς + + ħ n η q , ς + + ħ n η r , κ μ a p n η Ψ p , q , r , κ ν a Ψ ς + + ħ n η p , ς + + ħ n η q , ς + + ħ n η r , κ ν a p n η Ψ p , q , r , κ
and
lim n μ a Ψ ς + + ħ η n p , ς + + ħ η n q , ς + + ħ η n r , a η n κ = 1 lim n ν a Ψ ς + + ħ η n p , ς + + ħ η n q , ς + + ħ η n r , a η n κ = 0 .
Let the odd function Z : A B satisfy the inequality
μ a H Z ς ħ p q r ( p , q , r ) , κ μ a Ψ p , q , r , κ ν a H Z ς ħ p q r ( p , q , r ) , κ ν a Ψ p , q , r , κ
∃ unique additive mapping L : A B
μ a Z ( p ) L ( p ) , κ μ a Ψ p , p , p , ς + + ħ | ς + + ħ p | κ ν a Z ( p ) L ( p ) , κ ν a Ψ p , p , p , ς + + ħ | ς + + ħ p | κ
where η { 1 , 1 } .
Proof
Replacing the variables ( p , q , r ) by ( p , p , p ) in (16),
μ a ς + + ħ Z ς + + ħ p ς + + ħ 2 Z p , κ μ a Ψ p , p , p , κ ν a ς + + ħ Z ς + + ħ p ς + + ħ 2 Z p , κ ν a Ψ p , p , p , κ .
Using intuitionistic fuzzy conditions (A4) and (A10), the following result is arrived.
μ a Z ( ς + + ħ p ) ς + + ħ Z ( p ) , κ ς + + ħ 2 μ a Ψ ( p , p , p ) , κ ν a Z ( ς + + ħ p ) ς + + ħ Z ( p ) , κ ς + + ħ 2 ν a Ψ ( p , p , p ) , κ .
Replacing p by ς + + ħ n p in (19),
μ a Z ( ς + + ħ n + 1 p ) ς + + ħ Z ( ς + + ħ n p ) , κ ς + + ħ 2 μ a Ψ ( ς + + ħ n p , ς + + ħ n p , ς + + ħ n p ) , κ ν a Z ( ς + + ħ n + 1 p ) ς + + ħ Z ( ς + + ħ n p ) , κ ς + + ħ 2 ν a Ψ ( ς + + ħ n p , ς + + ħ n p , ς + + ħ n p ) , κ .
It is understood from (20) and the intuitionistic fuzzy conditions (A4) and (A10) that
μ a Z ( ς + + ħ n + 1 p ) ς + + ħ ( n + 1 ) Z ( ς + + ħ n p ) ς + + ħ n , κ ς + + ħ n + 2 μ a Ψ ( p , p , p ) , κ p n ν a Z ( ς + + ħ n + 1 p ) ς + + ħ ( n + 1 ) Z ( ς + + ħ n p ) ς + + ħ n , κ ς + + ħ n + 2 ν a Ψ ( p , p , p ) , κ p n .
Taking κ into p n κ in (21),
μ a Z ( ς + + ħ n + 1 p ) ς + + ħ ( n + 1 ) Z ( ς + + ħ n p ) ς + + ħ n , κ · p n ς + + ħ n + 2 μ a Ψ ( p , p , p ) , κ ν a Z ( ς + + ħ n + 1 p ) ς + + ħ ( n + 1 ) Z ( ς + + ħ n p ) ς + + ħ n , κ · p n ς + + ħ n + 2 ν a Ψ ( p , p , p ) , κ ,
the following result is obtained,
Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) = i = 0 n 1 Z ( ς + + ħ i + 1 p ) ς + + ħ ( i + 1 ) Z ( ς + + ħ i p ) ς + + ħ i .
From the above two equations,
μ a Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) , i = 0 n 1 p i κ ς + + ħ i + 2 = μ a i = 0 n 1 Z ( ς + + ħ i + 1 p ) ς + + ħ ( i + 1 ) Z ( ς + + ħ i p ) ς + + ħ i , i = 0 n 1 p i κ ς + + ħ i + 2 ν a Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) , i = 0 n 1 p i κ ς + + ħ i + 2 = ν a i = 0 n 1 Z ( ς + + ħ i + 1 p ) ς + + ħ ( i + 1 ) Z ( ς + + ħ i p ) ς + + ħ i , i = 0 n 1 p i κ ς + + ħ i + 2 .
From the above equations,
μ a Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) , i = 0 n 1 p i κ ς + + ħ i + 2 i = 0 n 1 μ a Z ( ς + + ħ i + 1 p ) ς + + ħ ( i + 1 ) Z ( ς + + ħ i p ) ς + + ħ i , p i κ r ς + + ħ i + 2 ν a Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) , i = 0 n 1 p i κ ς + + ħ i + 2 i = 0 n 1 ν a Z ( ς + + ħ i + 1 p ) ς + + ħ ( i + 1 ) Z ( ς + + ħ i p ) ς + + ħ i , p i κ ς + + ħ i + 2
where
i = 0 n 1 c j = c 1 c 2 c n a n d i = 0 n 1 d j = d 1 d 2 d n .
Finally,
μ a Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) , i = 0 n 1 p i κ ς + + ħ i + 2 i = 0 n 1 μ a Ψ ( p , p , p ) , κ = μ a Ψ ( p , p , p ) , κ ν a Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) , i = 0 n 1 p i κ ς + + ħ i + 2 i = 0 n 1 ν a Ψ ( p , p , p ) , κ = ν a Ψ ( p , p , p ) , κ .
Replacing p by ς + + ħ m p in (26) and using (15), (A4), (A10),
μ a Z ( ς + + ħ n + m p ) ς + + ħ ( n + m ) Z ( ς + + ħ m p ) ς + + ħ m , i = 0 n 1 p i κ ς + + ħ ( i + m + 2 ) μ a Ψ ( ς + + ħ m p , ς + + ħ m p , ς + + ħ m p ) , κ = μ a Ψ ( p , p , p ) , κ p m ν a Z ( ς + + ħ n + m p ) ς + + ħ ( n + m ) Z ( ς + + ħ m p ) ς + + ħ m , i = 0 n 1 p i κ ς + + ħ ( i + m + 2 ) ν a Ψ ( ς + + ħ m p , ς + + ħ m p , ς + + ħ m p ) , κ = ν a Ψ ( p , p , p ) , κ p m .
Replacing κ by p m κ in (27),
μ a Z ( ς + + ħ n + m p ) ς + + ħ ( n + m ) Z ( ς + + ħ m p ) ς + + ħ m , i = 0 n 1 p i + m κ ς + + ħ ( i + m + 2 ) μ a Ψ ( p , p , p ) , κ ν a Z ( ς + + ħ n + m p ) ς + + ħ ( n + m ) Z ( ς + + ħ m p ) ς + + ħ m , i = 0 n 1 p i + m κ ς + + ħ ( i + m + 2 ) ν a Ψ ( p , p , p ) , κ
μ a Z ( ς + + ħ n + m p ) ς + + ħ ( n + m ) Z ( ς + + ħ m p ) ς + + ħ m , κ μ a Ψ ( p , p , p ) , κ i = m n 1 p i ς + + ħ i + 2 ν a Z ( ς + + ħ n + m p ) ς + + ħ ( n + m ) Z ( ς + + ħ m p ) ς + + ħ m , κ ν a Ψ ( p , p , p ) , κ i = m n 1 p i ς + + ħ i + 2 .
Since 0 < p < 1 and i = 0 n p 1 i < . The sequence Z ( ς + + ħ n p ) ς + + ħ n is Cauchy in B , μ a , ν a . Since B , μ a , ν a is a complete IFNS, this sequence converges to some point L p B . Defining L : A B by
lim n μ a Z ( ς + + ħ n p ) ς + + ħ n L ( p ) , κ = 1 ,
lim n ν a Z ( ς + + ħ n p ) ς + + ħ n L ( p ) , κ = 0 .
Then,
Z ( ς + + ħ n p ) ς + + ħ n I F L ( p ) , a s n .
Substituting m = 0 in (29),
μ a Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) , κ μ a Ψ ( p , p , p ) , κ i = 0 n 1 p i ς + + ħ i + 2 ν a Z ( ς + + ħ n p ) ς + + ħ n Z ( p ) , κ ν a Ψ ( p , p , p ) , κ i = 0 n 1 p i ς + + ħ i + 2 .
As n in (30),
μ a L ( p ) Z ( p ) , κ μ a Ψ ( p , p , p ) , ς + + ħ κ ( ς + + ħ p ) ν a L ( p ) Z ( p ) , κ ν a Ψ ( p , p , p ) , ς + + ħ κ ( ς + + ħ p ) .
Finally, L satisfies (2). Replacing ( p , q , r ) by
( ς + + ħ n p , ς + + ħ n q , ς + + ħ n r )
in (16),
μ a 1 ς + + ħ n H Z ς ħ p q r ( ς + + ħ n p , ς + + ħ n q , ς + + ħ n r ) , κ μ a Ψ ( ς + + ħ n p , ς + + ħ n q , ς + + ħ n r ) , ς + + ħ n κ ν a 1 ς + + ħ n H Z ς ħ p q r ( ς + + ħ n p , ς + + ħ n q , ς + + ħ n r ) , κ ν a Ψ ( ς + + ħ n p , ς + + ħ n q , ς + + ħ n r ) , ς + + ħ n κ .
Here,
μ a ( ς L ħ p q + L ς ħ q r + ħ L ς r p + ς + + ħ L ς p + q + ħ ς + + ħ ς L p + L q + ħ L r ) μ a ς L ħ p q ς ς + + ħ n Z ħ p q , κ 6 μ a L ς ħ q r ς + + ħ n Z ς ħ q r , κ 6 μ a ς + + ħ L ς p + q + ħ + ς + + ħ ς + + ħ n Z ς p + q + ħ , κ 6 μ a ( ς + + ħ ς L p + L q + ħ L r + ς + + ħ ς + + ħ n ς Z p + Z q + ħ Z r , κ 6 ) μ a ( ς ς + + ħ n Z ħ p q + ς + + ħ n Z ς ħ q r + ħ ς + + ħ n Z ς r p + ς + + ħ ς + + ħ n Z ς p + q + ħ ς + + ħ ς + + ħ n ς Z p + Z q + ħ Z r , κ 6 )
and
ν a ( ς L ħ p q + L ς ħ q r + ħ L ς r p + ς + + ħ L ς p + q + ħ ς + + ħ ς L p + L q + ħ L r ) ν a ς L ħ p q ς ς + + ħ n Z ħ p q , κ 6 ν a L ς ħ q r ς + + ħ n Z ς ħ q r , κ 6 ν a ς + + ħ L ς p + q + ħ + ς + + ħ ς + + ħ n Z ς p + q + ħ , κ 6 ν a ( ς + + ħ ς L p + L q + ħ L r + ς + + ħ ς + + ħ n ς Z p + Z q + ħ Z r , κ 6 ) ν a ( ς ς + + ħ n Z ħ p q + ς + + ħ n Z ς ħ q r + ħ ς + + ħ n Z ς r p + ς + + ħ ς + + ħ n Z ς p + q + ħ ς + + ħ ς + + ħ n ς Z p + Z q + ħ Z r , κ 6 ) .
Also,
lim n μ a 1 ς + + ħ n H Z ς ħ p q r ( ς + + ħ n p , ς + + ħ n q , ς + + ħ n r ) , κ 6 = 1 , lim n ν a 1 ς + + ħ n H Z ς ħ p q r ( ς + + ħ n p , ς + + ħ n q , ς + + ħ n r ) , κ 6 = 0 .
As n in (33), (34), and applying (35), L fulfills (2). Hence, L is an additive function. Here, it is proven that L ( p ) is unique. Let L ( p ) be another additive map (2) and (17). Therefore,
μ a ( L ( p ) L ( p ) , κ ) μ a L ( ς + + ħ n p ) Z ( ς + + ħ n p ) , κ . ς + + ħ n 2 μ a Z ( ς + + ħ n p ) L ( ς + + ħ n p ) , κ . ς + + ħ n 2 μ a Ψ ( ς + + ħ n p , ς + + ħ n p , ς + + ħ n p ) , κ ς + + ħ n + 1 2 | ς + + ħ p | μ a Ψ ( p , p , p ) , κ ς + + ħ n + 1 | ς + + ħ p | 2 · p n ,
ν a ( L ( p ) L ( p ) , κ ) ν a L ( ς + + ħ n p ) Z ( ς + + ħ n p ) , κ . ς + + ħ n 2 ν a Z ( ς + + ħ n p ) L ( ς + + ħ n p ) , κ . ς + + ħ n 2 ν a Ψ ( ς + + ħ n p , ς + + ħ n p , ς + + ħ n p ) , κ ς + + ħ n + 1 2 | ς + + ħ p | ν a Ψ ( p , p , p ) , κ ς + + ħ n + 1 | ς + + ħ p | 2 · p n .
Since lim n κ ς + + ħ n + 1 | ς + + ħ p | 2 p n = ,
lim n μ a Ψ ( p , p , p ) , κ ς + + ħ n + 1 | ς + + ħ p | 2 · p n = 1 , lim n ν a Ψ ( p , p , p ) , κ ς + + ħ n + 1 | ς + + ħ p | 2 · p n = 0 .
Hence,
μ a ( L ( p ) L ( p ) , κ ) = 1 , ν a ( L ( p ) L ( p ) , κ ) = 0 .
Thus, L ( p ) = L ( p ) . Hence, L ( p ) is unique.
Category 1.
Assume η = 1 . Substituting p by p ς + + ħ in (18),
μ a ς + + ħ Z ( p ) ς + + ħ 2 Y p ς + + ħ , κ μ a Ψ p 2 , p 2 , p 2 , κ ν a ς + + ħ Z ( p ) ς + + ħ 2 Y p ς + + ħ , κ ν a Ψ p 2 , p 2 , p 2 , κ
Corollary 1.
Let Z be an approximately additive mapping that satisfies the inequality
μ a H Z ς ħ p q r ( p , q , r ) , κ μ a Q , κ , μ a Q | | p | | a + | | q | | b + | | r | | c , κ , a , b , c 1 μ a Q | | p | | a | | q | | b | | r | | c , κ , a + b + c 1 μ a Q | | p | | a | | q | | b | | r | | c + | | p | | a + b + c + | | q | | a + b + c + | | r | | a + b + c , κ , a + b + c 1 ν a H Z ς ħ p q r ( p , q , r ) , κ ν a Q , κ , ν a Q | | p | | a + | | q | | b + | | r | | c , κ , a , b , c 1 ν a Q | | p | | a | | p | | b | | q | | c , κ , a + b + c 1 ν a Q | | p | | a | | q | | b | | r | | c + | | p | | a + b + c + | | q | | a + b + c + | | r | | a + b + c , κ , a + b + c 1
such that
μ a Z ( p ) L ( p ) , κ μ a Q , ς + + ħ κ | ς + + ħ 1 | , μ a Q | | p | | a | ς + + ħ | a + Q | | p | | b | ς + + ħ | b + Q | | p | | c | ς + + ħ | c , ς + + ħ κ | ς + + ħ ς + + ħ a | + | ς + + ħ ς + + ħ b | + | ς + + ħ ς + + ħ c | , μ a Q | | p | | a + b + c | ς + + ħ | a + b + c , ς + + ħ κ | ς + + ħ ς + + ħ a + b + c | , μ a Q | | p | | a + b + c | ς + + ħ | a + b + c + Q | | p | | a | ς + + ħ | a + Q | | p | | b | ς + + ħ | b + Q | | p | | c | ς + + ħ | c , ς + + ħ κ | ς + + ħ ς + + ħ a + b + c | ,
ν a Z ( p ) L ( p ) , κ ν a Q , ς + + ħ κ | ς + + ħ 1 | , ν a Q | | p | | a | ς + + ħ | a + Q | | p | | b | ς + + ħ | b + Q | | p | | c | ς + + ħ | c , ς + + ħ κ | ς + + ħ ς + + ħ a | + | ς + + ħ ς + + ħ b | + | ς + + ħ ς + + ħ c | , ν a Q | | p | | a + b + c | ς + + ħ | a + b + c , ς + + ħ κ | ς + + ħ ς + + ħ a + b + c | , ν a Q | | p | | a + b + c | ς + + ħ | a + b + c + Q | | p | | a | ς + + ħ | a + Q | | p | | b | ς + + ħ | b + Q | | p | | c | ς + + ħ | c , ς + + ħ κ | ς + + ħ ς + + ħ a + b + c | .

5. Stability Results: Fixed Point Method

Using the FPT [57], the generalised HURS of the functional Equation (2) is derived.
Theorem 2.
Let Ψ : A × A × A B such that
lim n μ a Ψ T i n p , T i n q , T i n r , T n κ = 1 , lim n ν a Ψ T i n p , T i n q , T i n r , T n κ = 0 ,
where
T i = ς + + ħ i f i = 0 1 ς + + ħ i f i = 1 ,
then
μ a H Z ς ħ p q r ( p , q , r ) , κ μ a Ψ p , q , r , κ ν a H Z ς ħ p q r ( p , q , r ) , κ ν a Ψ p , q , r , κ .
If L = L ( i ) ,
Z ( p ) = 1 ς + + ħ Ψ p ς + + ħ , p ς + + ħ , p ς + + ħ ,
and
μ a L Z ( T i p ) T i , κ = μ a Z ( p ) , κ ν a L Z ( T i p ) T i , κ = ν a Z ( p ) , κ
then
μ a Z ( p ) L ( p ) , κ μ a Z ( p ) , L 1 i 1 L κ ν a Z ( p ) L ( p ) , κ ν a Z ( p ) , L 1 i 1 L κ .
Proof
Let
Q = { h | h : p Y , Z ( 0 ) = 0 }
d ( h , f ) = inf L ( 0 , ) : μ a ( Z ( p ) Z ( p ) , κ ) μ a ( Z ( p ) , L κ ) , κ > 0 ν a ( Z ( p ) Z ( p ) , κ ) ν a ( Z ( p ) , L κ ) , κ > 0
Now, from (46)
inf L ( 0 , ) : μ a ( Z ( p ) Z ( p ) , κ ) μ a ( Z ( p ) , κ ) } μ a ( 1 T i Z ( T i p ) 1 T i Z ( T i p ) , κ ) μ a ( Z ( T i p ) , T i κ ) } μ a ( 1 T i Z ( T i p ) 1 T i Z ( T i p ) , κ ) μ a ( Z ( p ) , L κ ) } μ a ( J Z ( p ) J Z ( p ) , κ ) μ a ( Z ( p ) , L κ ) } ν a ( Z ( p ) Z ( p ) , κ ) ν a ( Z ( p ) , κ ) } ν a ( 1 T i Z ( T i p ) 1 T i Z ( T i p ) , κ ) ν a ( Z ( T i p ) , T i κ ) } ν a ( 1 T i Z ( T i p ) 1 T i Z ( T i p ) , κ ) ν a ( Z ( p ) , L κ ) } ν a ( J Z ( p ) J Z ( p ) , κ ) ν a ( Z ( p ) , L κ ) }
and
inf 1 ( 0 , ) : μ a Z ( ς + + ħ p ) ς + + ħ Z ( p ) , κ μ a Ψ ( p , p , p ) , ς + + ħ κ ν a Z ( ς + + ħ p ) ς + + ħ Z ( p ) , κ ν a Ψ ( p , p , p ) , ς + + ħ κ
Assuming i = 0 , and
inf L 1 0 ( 0 , ) : μ a Z ( ς + + ħ p ) ς + + ħ Z ( p ) , κ μ a Ψ ( p , p , p ) , ς + + ħ κ μ a Z ( ς + + ħ p ) ς + + ħ Z ( p ) , κ μ a Ψ ( p , p , p ) , ς + + ħ 2 κ μ a J Z ( p ) Z ( p ) , κ μ a Z ( p ) , L κ μ a J Z ( p ) Z ( p ) , κ μ a Z ( p ) , L κ μ a J Z ( p ) Z ( p ) , κ μ a Z ( p ) , L κ ν a Z ( ς + + ħ p ) ς + + ħ Z ( p ) , t ν a Ψ ( p , p , p ) , ς + + ħ κ ν a Z ( ς + + ħ p ) ς + + ħ Z ( p ) , κ ν a Ψ ( p , p , p ) , ς + + ħ 2 κ ν a J Z ( p ) Z ( p ) , κ ν a Z ( p ) , L κ ν a J Z ( p ) Z ( p ) , κ ν a Z ( p ) , L κ ν a J Z ( p ) Z ( p ) , κ ν a Z ( p ) , L κ
If i = 1 , and
inf L 1 1 ( 0 , ) : μ a Z ( p ) ς + + ħ Y p ς + + ħ , κ μ a Ψ p ς + + ħ , p ς + + ħ , ς + + ħ κ μ a Z ( p ) J Z ( p ) , κ μ a Z ( p ) , κ μ a Z ( p ) J Z ( p ) , κ μ a Z ( p ) , κ μ a Z ( p ) J Z ( p ) , κ μ a Z ( p ) , κ ν a Z ( p ) ς + + ħ Y p ς + + ħ , p ς + + ħ , t ν a Ψ p ς + + ħ , ς + + ħ κ ν a Z ( p ) J Z ( p ) , κ ν a Z ( p ) , κ ν a Z ( p ) J Z ( p ) , κ ν a Z ( p ) , κ ν a Z ( p ) J Z ( p ) , κ ν a Z ( p ) , κ
and
inf L 1 i ( 0 , ) : μ a ( Z ( p ) J Z ( p ) , κ ) μ a ( Z ( p ) , L 1 i κ ) , ν a ( Z ( p ) J Z ( p ) , κ ) ν a ( Z ( p ) , L 1 i κ ) ,
Hence property [57] Condition: 1 holds.
By [57] Condition: 2, there exists a fixed point L of J in Q such that
lim n μ a Z ( T i n p ) T i n L ( p ) , κ = 1 ,
lim n ν a Z ( T i n p ) T i n L ( p ) , κ = 0 .
To show Z is additive, replacing p , q , r by T i n p , T i n q , T i n r and applying the necessary condition, the functional equation is derived.
By [57] Condition: 3, L is the unique fixed point of J in the set Δ = { L Q : d ( Z , A ) < } .
L is a unique function, such that
μ a ( Z ( p ) L ( p ) , κ ) μ a ( Z ( p ) , L 1 i κ ) , p A ν a ( Z ( p ) L ( p ) , κ ) ν a ( Z ( p ) , L 1 i κ ) , p A .
Finally, using [57], condition: 4
μ a Z ( p ) L ( p ) , κ μ a Z ( p ) , L 1 i 1 L κ ν a Z ( p ) L ( p ) , κ ν a Z ( p ) , L 1 i 1 L κ .
Hence, proven. □
Corollary 2.
Let Z be an approximately additive mapping satisfying the inequality
μ a H Z ς ħ p q r ( p , q , r ) , κ μ a Q , κ , μ a Q | | p | | a + | | q | | a + | | r | | a , κ , a 1 μ a Q | | p | | a | | q | | a | | r | | a , κ , 3 a 1 μ a Q | | p | | a | | q | | a | | r | | a + | | p | | 3 a + | | q | | 3 a + | | r | | 3 a , κ , 3 a 1 ν a H Z ς ħ p q r ( p , q , r ) , κ ν a Q , κ , ν a Q | | p | | a + | | q | | a + | | r | | a , κ , a 1 ν a Q | | p | | a | | q | | a | | r | | a , κ , 3 a 1 ν a Q | | p | | a | | q | | a | | r | | a + | | p | | 3 a + | | q | | 3 a + | | r | | 3 a , κ , 3 a 1
such that
μ a Z ( p ) L ( p ) , κ μ a Q ς + + ħ , ς + + ħ 1 ς + + ħ κ μ a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , ς + + ħ ς + + ħ a ς + + ħ κ μ a Q | | p | | 3 a ς + + ħ 1 | ς + + ħ | 3 a , ς + + ħ ς + + ħ 3 a ς + + ħ κ μ a Q | | p | | 3 a ς + + ħ 3 | ς + + ħ | 3 a + 1 | ς + + ħ | 3 a , ς + + ħ ς + + ħ 3 a ς + + ħ κ ν a Z ( p ) L ( p ) , κ ν a Q ς + + ħ , ς + + ħ 1 ς + + ħ κ ν a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , ς + + ħ ς + + ħ a ς + + ħ κ ν a Q | | p | | 3 a ς + + ħ 1 | ς + + ħ | 3 a , ς + + ħ ς + + ħ 3 a ς + + ħ κ ν a Q | | p | | 3 a ς + + ħ 3 | ς + + ħ | 3 a + 1 | ς + + ħ | 3 a , ς + + ħ ς + + ħ 3 a ς + + ħ κ .
Proof
Let
μ a Ψ ( T i n p , T i n q , T i n r ) , T i k κ = μ a Q , T i k κ , μ a Q | | p | | a + | | q | | a + | | r | | a , T i k a κ , μ a Q | | p | | a | | q | | a | | r | | a , T i k 3 a κ , μ a Q | | p | | a | | q | | a | | r | | a + | | p | | 3 a + | | q | | 3 a + | | r | | 3 a , T i k 3 a κ ,
= 1 as k 1 as k 1 as k 1 as k
ν a Ψ ( T i n p , T i n q ) , T i k κ = ν a Q , T i k κ , ν a Q | | p | | a + | | q | | a + | | r | | a , T i k a κ , ν a Q | | p | | a | | q | | a | | r | | a , T i k 3 a κ , ν a Q | | p | | a | | q | | a | | r | | a + | | p | | 3 a + | | q | | 3 a + | | r | | 3 a , T i k 3 a κ , = 0 as k 0 as k 0 as k 0 as k
At the end, the relation (40) holds; hence
μ a 1 ς + + ħ Ψ p ς + + ħ , κ = μ a Q ς + + ħ , κ μ a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , κ μ a Q | | p | | 3 a ς + + ħ 1 | ς + + ħ | 3 a , κ μ a Q | | p | | 3 a ς + + ħ 3 | ς + + ħ | 3 a + 1 | ς + + ħ | 3 a , κ ν a 1 ς + + ħ Ψ p ς + + ħ , κ = ν a Q ς + + ħ , κ ν a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , κ ν a Q | | p | | 3 a ς + + ħ 1 | ς + + ħ | 3 a , κ ν a Q | | p | | 3 a ς + + ħ 3 | ς + + ħ | 3 a + 1 | ς + + ħ | 3 a , κ .
From (44),
μ a Z ( T i p ) T i , κ = μ a Q , T i κ μ a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , T i 1 a κ μ a Q | | p | | 3 a ς + + ħ 1 | ς + + ħ | 3 a , T i 1 3 a κ μ a Q | | p | | 3 a ς + + ħ 3 | ς + + ħ | 3 a + 1 | ς + + ħ | 3 a , T i 1 3 a κ ν a Z ( T i p ) T i , κ = ν a Q , T i κ ν a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , T i 1 a κ ν a Q | | p | | 3 a ς + + ħ 1 | ς + + ħ | 3 a , T i 1 3 a κ ν a Q | | p | | 3 a ς + + ħ 3 | ς + + ħ | 3 a + 1 | ς + + ħ | 3 a , T i 1 3 a κ .
Hence, (45) is true for
L a , i = 0 L a , i = 1 1 . ς + + ħ 0 ς + + ħ 1 0 2 . ς + + ħ 1 a a < 1 ς + + ħ a 1 a > 1 3 . ς + + ħ 1 3 a 3 a < 1 ς + + ħ 3 a 1 3 a > 1 4 . ς + + ħ 3 a 1 3 a < 1 ς + + ħ 3 a 1 3 a > 1 .
Criteria 1.
For i = 0 ,
μ a Z ( p ) L ( p ) , κ μ a Z ( p ) , ς + + ħ 1 0 1 ς + + ħ κ = μ a Q ς + + ħ , ς + + ħ 1 ς + + ħ κ ν a Z ( p ) L ( p ) , κ ν a Z ( p ) , ς + + ħ 1 0 1 ς + + ħ κ = ν a Q ς + + ħ , ς + + ħ 1 ς + + ħ κ .
Criteria 2.
For i = 1 ,
μ a Z ( p ) L ( p ) , κ μ a Z ( p ) , ( ( ς + + ħ ) 1 ) 1 1 1 ( ς + + ħ ) 1 κ = μ a Q ς + + ħ , ς + + ħ ς + + ħ 1 κ ν a Z ( p ) L ( p ) , κ ν a Z ( p ) , ( ( ς + + ħ ) 1 ) 1 1 1 ( ς + + ħ ) 1 κ = ν a Q ς + + ħ , ς + + ħ ς + + ħ 1 κ .
Criteria 3.
For i = 0 ,
μ a Z ( p ) L ( p ) , κ μ a Z ( p ) , ( ς + + ħ 1 a ) 1 0 1 ( ς + + ħ 1 a ) κ = μ a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , ς + + ħ ς + + ħ a ς + + ħ k κ ν a Z ( p ) L ( p ) , κ ν a Z ( p ) , ( ς + + ħ 1 a ) 1 0 1 ( ς + + ħ 1 a ) κ = ν a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , ς + + ħ ς + + ħ a ς + + ħ κ .
Criteria 4.
For i = 1 ,
μ a Z ( p ) L ( p ) , κ μ a Z ( p ) , ( ς + + ħ a 1 ) 1 1 1 ( ς + + ħ a 1 ) κ = μ a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , ς + + ħ ς + + ħ k ς + + ħ a κ ν a Z ( p ) L ( p ) , κ ν a Z ( p ) , ( ς + + ħ a 1 ) 1 1 1 ( ς + + ħ a 1 ) κ = ν a Q | | p | | a ς + + ħ 3 | ς + + ħ | a , ς + + ħ ς + + ħ ς + + ħ a κ .

6. Applications of the Euler–Lagrange Symmetry Additive Functional Equation

In this section, the various applications of the solutions of the Euler–Lagrange symmetry additive functional equation are analysed using Fourier series and Fourier transform for various intervals.
Example 2.
If an odd mapping Z : A B satisfies the additive functional Equation (2) and the solution of the functional equation is Z ( p ) = p , then its Fourier cosine series for the interval ( 0 , T ) is
Z p = T 2 + n = 1 , 3 , 5 4 T n 2 cos n p
to deduce the series 1 1 4 + 1 3 4 + 1 5 4 + . = T 4 96 using Parseval’s theorem.
Proof
The cosine series is Z ( p ) = a 0 2 + n = 1 a n cos n T ; we have to find a 0 and a n
a 0 = 2 T 0 T p d p = 2 T p 2 2 0 T = 2 2 T T 2 0 = T
a n = 2 T 0 T p cos n p d p = 2 n 2 T 1 n 1
a n = 4 n 2 T , if n = 1 , 3 , 5 , , 0 , if n = 2 , 4 , 6 , .
The required Fourier cosine series is
Z p = T 2 + n = 1 , 3 , 5 4 T n 2 cos n p .
Let the Parseval’s identity for the Fourier cosine series be
2 T 0 T p 2 d p = T 2 2 + n = 1 , 3 , 5 , . . . 4 n 2 T 2
2 T p 3 3 0 T = T 2 2 + n = 1 , 3 , 5 16 T 2 n 4
T 2 6 × T 2 16 = n = 1 , 3 , 5 1 n 4
1 1 4 + 1 3 4 + 1 5 4 + . . . . = T 4 96 .
Example 3.
If an odd mapping Z : A B satisfies the additive functional Equation (2) and the solution is Z ( p ) = p , then the Fourier series in the interval l < p < l is
Z p = 2 T n = 1 1 n + 1 n sin n T p .
Proof
Since the given function is odd, the Fourier series is
Z ( p ) = n = 1 b n sin n T p .
We have to find b n .
b n = 2 l 0 l p sin n T p d p = 2 n T 1 n + 1 .
The required Fourier cosine series is
Z p = 2 T n = 1 1 n + 1 n sin n T p .
Example 4.
If an odd mapping Z : A B satisfies the additive functional Equation (2) and the solution is Z ( p ) = p , then the Fourier series for the interval 0 < p < 2 l is
Z p = l 2 l T n = 1 1 n sin n T p .
Proof
The General Fourier series is
Z ( p ) = a 0 2 + n = 1 a n cos n T p + n = 1 b n sin n T p .
We have to find a 0 , a n , and b n .
a 0 = 1 0 2 Z ( p ) d p = 1 0 2 p d p = 2 l .
a n = 1 0 2 Z ( p ) cos n T p d p = 1 0 2 p cos n T p d p = 1 l 2 n 2 T 2 cos n T p 0 2 l = 0 .
a n = 1 0 2 Z ( p ) sin n T p d p = 1 0 2 p sin n T p d p = 1 p l n T cos n T p 0 2 l = 2 l n T .
Then, the required Fourier series is
f p = l 2 l T n = 1 1 n sin n T p .
Example 5.
If an odd mapping Z : A B satisfies the additive functional Equation (2) and the solution is Z ( p ) = p , then the Fourier Transform of the function
Z ( p ) = p , if a < p < a , 0 , otherwise ,
is
Z ( s ) = i 2 T sin s a a s cos s a s 2 .
Proof
Given
Z ( p ) = p , if a < p < a , 0 , otherwise .
The Fourier transform Z ( p ) is
F Z ( p ) = Z ( s ) = 1 2 T Z ( p ) e i s p d p .
Z ( s ) = 1 2 T a 0 e i s p d p + a a p e i s p d p + a 0 e i s p d p .
Z ( s ) = 1 2 T a a p ( cos s p + i sin s p ) d p .
Z ( s ) = i 2 T sin s a a s cos s a s 2 .

7. Conclusions

In this study, a new class of real-valued Euler–Lagrange symmetry additive functional equations has been introduced, and its general solution has been derived. Subsequently, the HURS of the equation has been determined by applying direct and FPT in IFNS. Also, it has been proven that if the control function is the IFNS of the products of powers of norms, then the additive functional equation is stable. The results obtained are useful as the estimates for the difference between the exact and approximate solutions of the equation of interest can be further determined. The computed results will bridge the gap existing in the literature concerning the stability results of equations of interest in IFNS. Some significant potential applications of the results have also been explored in this article. This article improves on several earlier outcomes presented in the literature. Finally, some applications in which the solution of this Euler–Lagrange symmetry additive functional equation can be applied by the Fourier series, and Fourier transforms with various intervals are also demonstrated. In addition, the stability of a given FE can also be determined in some other known spaces such as Felbin’s and Menger probabilistic normed spaces, as they have not been explored yet. This is left as an open problem for future research.

Author Contributions

Author Contributions: P.A. and N.M.; writing—original draft: P.A., A.M. and N.M.; methodology: P.A. and A.M.; conceptualization: P.A.; supervision: K.J. and N.M.; investigation: A.M. and N.M. All authors have read and approved the final manuscript.

Funding

This research did not receive any external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors N. Mlaiki and A. Mukheimer would like to thank the Prince Sultan University for paying the publication fees for this work through TAS LAB.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Brzdęk, J.; El-hady, E.; Förg-Rob, W.; Leśniak, Z. A note on solutions of a functional equation arising in a queuing model for a LAN gateway. Aequationes Math. 2016, 90, 671–681. [Google Scholar] [CrossRef] [Green Version]
  2. El-hady, E.; Brzd˛ek, J.; Nassar, H. On the structure and solutions of functional equations arising from queueing models. Aequationes Math. 2017, 91, 445–477. [Google Scholar] [CrossRef] [Green Version]
  3. El-hady, E.; Förg-Rob, W.; Nassar, H. On a functional equation arising from a network model. Appl. Math. 2017, 11, 363–372. [Google Scholar] [CrossRef]
  4. Aiemsomboon, L.; Sintunavarat, W. On a new type of stability of a radical quadratic functional equation using Brzdek’s fixed point theorem. Acta Math. Hung. 2016, 151, 35–46. [Google Scholar] [CrossRef]
  5. Alizadeh, Z.; Ghazanfari, A.G. On the stability of a radical cubic functional equation in quasi-β spaces. J. Fixed Point Theory Appl. 2016, 18, 843–853. [Google Scholar] [CrossRef]
  6. Almahalebi, M.; Chahbi, A. Approximate solution of P-radical functional equation in 2-Banach spaces. Acta Math. Sci. 2019, 39, 551–566. [Google Scholar] [CrossRef]
  7. EL-Fassi, I.I. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. Mat. 2019, 113, 675–687. [Google Scholar] [CrossRef]
  8. Guariglia, E.; Tamilvanan, K. On the stability of radical septic functional equations. Mathematics 2020, 8, 2229. [Google Scholar] [CrossRef]
  9. Ulam, S.M. Problems in Modern Mathematics, Science, ed.; Some Questions in Analysis: 1, Stability; Wiley: New York, NY, USA, 1964; Chapter VI. [Google Scholar]
  10. Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
  11. Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
  12. Gǎvrutǎ, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
  13. Debnath, P.; Konwar, N.; Radenovic, S. Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Sciences. In Forum for Interdisciplinary Mathematics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
  14. Todorcevic, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
  15. Cho, Y.J.; Jleli, M.; Mursaleen, M.; Samet, B.; Vetro, C. Advances in Metric Fixed Point Theory and Applications; Springer: Singapore, 2021. [Google Scholar]
  16. Brzdęk, J.; Ciepliński, K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math. Sci. 2018, 38, 377–390. [Google Scholar] [CrossRef]
  17. Brzdęk, J.; Cădariu, L.; Ciepliński, K. Fixed point theory and the Ulam stability. J. Funct. Spaces 2014, 2014, 829419. [Google Scholar] [CrossRef] [Green Version]
  18. Kannappan, P.L. Quadratic functional equation inner product spaces. Results Math. 1995, 27, 368–372. [Google Scholar] [CrossRef]
  19. Rassias, J.M. On the stability of the Euler-Lagrange functional equation. Chin. J. Math. 1992, 20, 185–190. [Google Scholar]
  20. Rassias, J.M. On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces. J. Math. Phys. Sci. 1994, 28, 231–235. [Google Scholar]
  21. Rassias, J.M. On the stability of the general Euler-Lagrange functional equation. Demonstr. Math. 1996, 29, 755–766. [Google Scholar]
  22. Rassias, J.M. Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings. J. Math. Anal. Appl. 1998, 220, 613–639. [Google Scholar] [CrossRef] [Green Version]
  23. Rassias, J.M. On the stability of the multi-dimensional Euler-Lagrange functional equation. J. Indian Math. Soc. 1999, 66, 1–9. [Google Scholar]
  24. Mihet, D.; Saadati, R. On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 2011, 24, 2005–2009. [Google Scholar] [CrossRef] [Green Version]
  25. Kim, H.M.; Chang, I.S.; Son, E. Stability of Cauchy additive functional equation in Fuzzy Banach Spaces. Math. Inequalities Appl. 2013, 16, 1123–1136. [Google Scholar] [CrossRef] [Green Version]
  26. Baktash, E.; Cho, Y.J.; Jalili, M.; Saadati, R.; Vaezpour, S.M. On the stability of cubic mappings and quartic mappings in random normed spaces. J. Ineq. App. 2008, 2008, 902187. [Google Scholar]
  27. Ghaffari, A.; Alinejad, A. Stabilities of cubic mappings in fuzzy normed spaces. Adv. Diff. Equ. 2010, 2010, 150873. [Google Scholar] [CrossRef]
  28. Saha, P.; Samanta, T.K.; Mondal, P.; Choudhury, B.S.; De La Sen, M. Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces. Mathematics 2020, 8, 974. [Google Scholar] [CrossRef]
  29. Alanazi, A.M.; Muhiuddin, G.; Tamilvanan, K.; Alenze, E.N.; Ebaid, A.; Loganathan, K. Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods. Mathematics 2020, 8, 1050. [Google Scholar] [CrossRef]
  30. Madadi, M.; Saadati, R.; De la Sen, M. Stability of Unbounded Differential Equations in Menger k-Normed Spaces: A Fixed Point Technique. Mathematics 2020, 8, 400. [Google Scholar] [CrossRef] [Green Version]
  31. Liu, K.; Fečkan, M.; Wang, J. A Fixed-Point Approach to the Hyers–Ulam Stability of Caputo–Fabrizio Fractional Differential Equations. Mathematics 2020, 8, 647. [Google Scholar] [CrossRef] [Green Version]
  32. Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
  33. Alzabut, J.; Selvam, A.G.M.; Dhineshbabu, R.; Kaabar, M.K. The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation. Symmetry 2021, 13, 789. [Google Scholar] [CrossRef]
  34. Bahyrycz, A.; Brzd˛ek, J.; El-hady, E.; Lesniak, Z. On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey. Symmetry 2021, 13, 2200. [Google Scholar] [CrossRef]
  35. Tamilvanan, K.; Alanazi, A.M.; Rassias, J.M.; Alkhaldi, A.H. Ulam Stabilities and Instabilities of Euler–Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces. Mathematics 2021, 9, 3063. [Google Scholar] [CrossRef]
  36. Govindan, V.; Lupas, A.A.; Noeiaghdam, S. Stability of Additive Functional Equation Originating from Characteristic Polynomial of Degree Three. Symmetry 2022, 14, 700. [Google Scholar] [CrossRef]
  37. Lupas, A.A. Symmetry in Functional Equations and Analytic Inequalities II. Symmetry 2022, 14, 268. [Google Scholar] [CrossRef]
  38. El-Hady, E.S.; El-Fassi, I.I. Stability of the Equation of q-Wright Affine Functions in Non-Archimedean (n,β)-Banach Spaces. Symmetry 2022, 14, 633. [Google Scholar] [CrossRef]
  39. Uthirasamy, N.; Tamilvanan, K.; Kabeto, M.J. Ulam stability and nonstability of additive functional equation in IFN-spaces and 2-Banach spaces by different methods. J. Funct. Spaces 2022, 2022, 8028634. [Google Scholar]
  40. Agilan, P.; Julietraja, K.; Fatima, N.; Vallinayagam, V.; Mlaiki, N.; Souayah, N. Direct and Fixed-Point Stability–Instability of Additive Functional Equation in Banach and Quasi-Beta Normed Spaces. Symmetry 2022, 14, 1700. [Google Scholar] [CrossRef]
  41. Rasham, T.; Shoaib, A.; Park, C.; Agarwal, R.P.; Aydi, H. On a pair of fuzzy mappings in modular-like metric spaces with applications. Adv. Differ. Equations 2021, 2021, 245. [Google Scholar] [CrossRef]
  42. Rasham, T.; Marino, G.; Shahzad, A.; Park, C.; Shoaib, A. Fixed point results for a pair of fuzzy mappings and related applications in b- metric like spaces. Adv. Differ. Equations 2021, 2021, 259. [Google Scholar] [CrossRef]
  43. Rasham, T.; Asif, A.; Aydi, H.; De La Sen, M. On pairs of fuzzy dominated mappings and applications. Adv. Differ. Equations 2021, 2021, 417. [Google Scholar] [CrossRef]
  44. Rasham, T.; Shabbir, M.S.; Agarwal, P.; Momani, S. On a pair of fuzzy dominated mappings on closed ball in the multiplicative metric space with applications. Fuzzy Sets Syst. 2021, 437, 81–96. [Google Scholar] [CrossRef]
  45. Shazad, A.; Rasham, T.; Marino, G.; Shoaib, A. On fixed point results for α ∗-ψ-dominated fuzzy contractive mappings with graph. J. Intell. Fuzzy Syst. 2020, 38, 3093–3103. [Google Scholar] [CrossRef]
  46. Rasham, T.; Nazam, M.; Aydi, H.; Shoaib, A.; Park, C.; Lee, J.R. Hybrid pair of multivalued mappings in modular-like metric spaces and applications. AIMS Math. 2022, 7, 10582–10595. [Google Scholar] [CrossRef]
  47. Rasham, T.; Agarwal, P.; Abbasi, L.S.; Jain, S. A study of some new multivalued fixed point results in a modular like metric space with graph. J. Anal. 2022, 30, 833–844. [Google Scholar] [CrossRef]
  48. Beg, I.; Gupta, V.; Kanwar, A. Fixed points on intuitionistic fuzzy metric spaces using the E.A. property. J. Nonlinear Funct. Anal. 2015, 2015, 20. [Google Scholar]
  49. Bodaghi, A. Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations. J. Intel. Fuzzy Syst 2016, 2309, 2317. [Google Scholar] [CrossRef]
  50. Bodaghi, A.; Park, C.; Rassias, J.M. Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces. Commun. Korean Math. Soc. 2016, 31, 729–743. [Google Scholar] [CrossRef] [Green Version]
  51. SMohiuddine, A.; Lohani, Q.M.D. On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos Solitons Fractals 2009, 42, 731–1737. [Google Scholar]
  52. Mursaleen, M.; Mohiuddine, S.A. On stability of a cubic functional equation in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals. 2009, 42, 2997–3005. [Google Scholar] [CrossRef]
  53. Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
  54. Saadati, R.; Park, J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–344. [Google Scholar] [CrossRef] [Green Version]
  55. Saadati, R.; Sedghi, S.; Shobe, N. Modified intuitionistic fuzzy metric spaces and some fxed point theorems. Chaos Solitons Fractals 2008, 38, 36–47. [Google Scholar] [CrossRef]
  56. Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  57. Margolis, B.; Diaz, J.B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 126, 305–309. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Agilan, P.; Julietraja, K.; Mlaiki, N.; Mukheimer, A. Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT). Symmetry 2022, 14, 2454. https://doi.org/10.3390/sym14112454

AMA Style

Agilan P, Julietraja K, Mlaiki N, Mukheimer A. Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT). Symmetry. 2022; 14(11):2454. https://doi.org/10.3390/sym14112454

Chicago/Turabian Style

Agilan, P., K. Julietraja, Nabil Mlaiki, and Aiman Mukheimer. 2022. "Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT)" Symmetry 14, no. 11: 2454. https://doi.org/10.3390/sym14112454

APA Style

Agilan, P., Julietraja, K., Mlaiki, N., & Mukheimer, A. (2022). Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT). Symmetry, 14(11), 2454. https://doi.org/10.3390/sym14112454

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop