PeerAmbush: Multi-Layer Perceptron to Detect Peer-to-Peer Botnet
Abstract
:1. Introduction
2. Relevant Research and Critical Analysis
2.1. Relevant Research
2.2. Critical Analysis
2.2.1. Dataset Concern
2.2.2. Feature Engineering Concern
2.2.3. Detection Concern
3. PeerAmbush
- Constructing a new dataset that includes P2P botnet traffic and background flow;
- Proposing a novel feature engineering method based on mathematical union theory to select the most significant features: Best First Union (BFU);
- Adapting the MLP as a classifier to detect P2P botnets.
3.1. Data Construction
3.1.1. CTU-13 Dataset
3.1.2. HIKARI Dataset
3.2. Data Preparation
3.3. Feature Engineering
3.3.1. CFS Subset Evaluation
3.3.2. Consistency Subset Evaluation
3.4. MLP-Based P2P Botnet Detection
3.4.1. Multi-Layer Perceptron (MLP)
3.4.2. Percentage-Split
3.4.3. Cross-Validation
3.5. Evaluation Metrics
4. Implementation and Experimental Results
4.1. Data Construction and Preparation (Stages 1–2)
4.2. Feature Engineering (Stage 3)
4.3. Evaluation Results of MLP-Based P2P Botnet Detection
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karuppayah, S. Advanced Monitoring in P2P Botnets A Dual Perspective; Springer: Singapore, 2018; ISBN 9789811090493. [Google Scholar]
- Karuppayah, S.; Manickam, S.; Böck, L.; Grube, T.; Mühlhäuser, M.; Fischer, M. SensorBuster: On Identifying Sensor Nodes in P2P Botnets. In Proceedings of the 12th International Conference on Availability, Reliability and Security, Reggio Calabria Italy, 29 August–1 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Lo, W.W.; Layeghy, S.; Sarhan, M.; Portmann, M. XG-BoT: An Explainable Deep Graph Neural Network for Botnet Detection and Forensics. arXiv 2022, arXiv:2207.09088. Available online: https://arxiv.org/abs/2207.09088 (accessed on 13 October 2022).
- Karuppayah, S.; Roos, S.; Rossow, C.; Muhlhauser, M.; Fischer, M. Zeus Milker: Circumventing the P2P Zeus Neighbor List Restriction Mechanism. In Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems, Columbus, OH, USA, 29 June–2 July 2015; pp. 619–629. [Google Scholar] [CrossRef]
- Su, S.C.; Chen, Y.R.; Tsai, S.C.; Lin, Y.B. Detecting P2P Botnet in Software Defined Networks. Secur. Commun. Netw. 2018, 2018, 4723862. [Google Scholar] [CrossRef] [Green Version]
- Alauthaman, M.; Aslam, N.; Zhang, L.; Alasem, R.; Hossain, M.A. A P2P Botnet Detection Scheme Based on Decision Tree and Adaptive Multilayer Neural Networks. Neural Comput. Appl. 2018, 29, 991–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, R.U.; Zhang, X.; Kumar, R.; Sharif, A.; Golilarz, N.A.; Alazab, M. An Adaptive Multi-Layer Botnet Detection Technique Using Machine Learning Classifiers. Appl. Sci. 2019, 9, 2375. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Perdisci, R.; Lee, W.; Luo, X.; Sarfraz, U. Building a Scalable System for Stealthy Peer to Peer Botnet Detection. IEEE Trans. Inf. Forensics Secur. 2014, 2, 6–10. [Google Scholar]
- Karuppayah, S.; Vasilomanolakis, E.; Haas, S.; Muhlhauser, M.; Fischer, M. BoobyTrap: On Autonomously Detecting and Characterizing Crawlers in P2P Botnets. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar] [CrossRef]
- Karuppayah, S.; Fischer, M.; Rossow, C.; Muhlhauser, M. On Advanced Monitoring in Resilient and Unstructured P2P Botnets. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 871–877. [Google Scholar] [CrossRef]
- Stover, S.; Dittrich, D.; Hernandez, J.; Dietrich, S. Analysis of the Storm and Nugache Trojans: P2P Is Here. USENIX Login 2007, 32, 18–27. [Google Scholar]
- Andriesse, D.; Rossow, C.; Stone-Gross, B.; Plohmann, D.; Bos, H. Highly Resilient Peer-to-Peer Botnets Are Here: An Analysis of Gameover Zeus. In Proceedings of the 2013 8th International Conference on Malicious and Unwanted Software: “The Americas” (MALWARE), Fajardo, PR, USA, 22–24 October 2013; pp. 116–123. [Google Scholar] [CrossRef] [Green Version]
- Arce, I.; Levy, E. An Analysis of the Slapper Worm. IEEE Secur. Priv. 2003, 1, 82–87. [Google Scholar] [CrossRef]
- Yen, T.F.; Reiter, M.K. Are Your Hosts Trading or Plotting? Telling P2P File-Sharing and Bots Apart. In Proceedings of the 2010 IEEE 30th International Conference on Distributed Computing Systems, Genoa, Italy, 21–25 June 2010; pp. 241–252. [Google Scholar] [CrossRef]
- Tara Seals Unique P2P Architecture Gives DDG Botnet “Unstoppable” Status|Threatpost. Available online: https://threatpost.com/p2p-ddg-botnet-unstoppable/154650/ (accessed on 8 November 2022).
- Jake Aurand FritzFrog P2P Botnet Attacking Healthcare, Education and Government Sectors—Binary Defense. Available online: https://www.binarydefense.com/threat_watch/fritzfrog-p2p-botnet-attacking-healthcare-education-and-government-sectors/ (accessed on 8 November 2022).
- Priyanka; Dave, M. PeerFox: Detecting Parasite P2P Botnets in Their Waiting Stage. In Proceedings of the 2015 International Conference on Signal Processing, Computing and Control (ISPCC), Waknaghat, India, 24–26 September 2015; pp. 350–355. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, R.A.; Maciá-Fernández, G.; García-Teodoro, P.; Steiner, M.; Balzarotti, D. Resource Monitoring for the Detection of Parasite P2P Botnets. Comput. Netw. 2014, 70, 302–311. [Google Scholar] [CrossRef]
- Kabla, A.H.H.; Anbar, M.; Manickam, S.; Alamiedy, T.A.; Cruspe, P.B.; Al-Ani, A.K.; Karupayah, S. Applicability of Intrusion Detection System on Ethereum Attacks: A Comprehensive Review. IEEE Access 2022, 10, 71632–71655. [Google Scholar] [CrossRef]
- Alamiedy, T.A.; Anbar, M.F.; Belaton, B. Ensemble Feature Selection Approach for Detecting Denial of Service Attacks in RPL Networks. Int. J. Eng. Res. 2021, V7, 21. [Google Scholar] [CrossRef]
- Kaur, N.; Behal, S. P2P-BDS: Peer-2-Peer Botnet Detection System. IOSR J. Comput. Eng. 2014, 16, 28–33. [Google Scholar] [CrossRef]
- Rahbarinia, B.; Perdisci, R.; Lanzi, A.; Li, K. Peer Rush: Mining for Unwanted P2P Traffic. J. Inf. Secur. Appl. 2014, 19, 194–208. [Google Scholar] [CrossRef]
- Garg, S.; Singh, A.K.; Sarje, A.K.; Peddoju, S.K. Behaviour Analysis of Machine Learning Algorithms for Detecting P2P Botnets. In Proceedings of the 2013 15th International Conference on Advanced Computing Technologies (ICACT), Rajampet, India, 21–22 September 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Jiang, H.; Shao, X. Detecting P2P Botnets by Discovering Flow Dependency in C&C Traffic. Peer-to-Peer Netw. Appl. 2014, 7, 320–331. [Google Scholar] [CrossRef]
- Liao, W.H.; Chang, C.C. Peer to Peer Botnet Detection Using Data Mining Scheme. In Proceedings of the 2010 International Conference on Internet Technology and Applications, Wuhan, China, 20–22 August 2010; pp. 1–3. [Google Scholar] [CrossRef]
- Zhao, D.; Traore, I. P2P Botnet Detection through Malicious Fast Flux Network Identification. In Proceedings of the 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Victoria, BC, Canada, 12–14 November 2012; pp. 170–175. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, B. A Feature Extraction Method for P2P Botnet Detection Using Graphic Symmetry Concept. Symmetry 2019, 11, 326. [Google Scholar] [CrossRef] [Green Version]
- Yin, C. Towards Accurate Node-Based Detection of P2P Botnets. Sci. World J. 2014, 2014, 425491. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2019; ISBN 9781351609470. [Google Scholar]
- Xing, Y.; Shu, H.; Kang, F.; Zhao, H. Peertrap: An Unstructured P2P Botnet Detection Framework Based on SAW Community Discovery. Wirel. Commun. Mob. Comput. 2022, 2022, 1–18. [Google Scholar] [CrossRef]
- Dataset Search. Available online: https://datasetsearch.research.google.com/ (accessed on 12 October 2022).
- Mendeley Data. Available online: https://data.mendeley.com/ (accessed on 12 October 2022).
- Kaggle. Available online: https://www.kaggle.com/datasets (accessed on 12 October 2022).
- McGregor, S.E. Practical Python Data Wrangling & Data Quality; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2022; ISBN 9781119130536. [Google Scholar]
- Karuppayah, S.; Jaisan, A. DCNDS Project Dataset—P2P Botnet Detection Using Enhanced Peer Hunter. 2021. Available online: https://doi.org/10.5281/ZENODO.5554851 (accessed on 12 October 2022).
- CTU University The CTU-13 Dataset. Available online: https://www.stratosphereips.org/datasets-ctu13 (accessed on 12 October 2022).
- VHS-22|Kaggle. Available online: https://www.kaggle.com/datasets/h2020simargl/vhs-22-network-traffic-dataset (accessed on 12 October 2022).
- MTA-KDD-19|Kaggle. Available online: https://www.kaggle.com/datasets/mathurinache/mtakdd19 (accessed on 12 October 2022).
- 2019 Trendmicro CTF Wildcard 400|Kaggle. Available online: https://www.kaggle.com/datasets/hawkcurry/2019-trendmicro-ctf-wildcard-400 (accessed on 12 October 2022).
- Joshi, A.; Chaudhary, M.S. Study of P2P Botnet. IOSR J. Comput. Eng. 2014, 16, 35–42. [Google Scholar] [CrossRef]
- IMPACT—ISOT Botnet Dataset. Available online: https://www.impactcybertrust.org/dataset_view?idDataset=1281 (accessed on 12 October 2022).
- Nargesian, F.; Samulowitz, H.; Khurana, U.; Khalil, E.B.; Turaga, D. Learning Feature Engineering for Classification. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2529–2535. [Google Scholar] [CrossRef] [Green Version]
- Ferriyan, A.; Thamrin, A.H.; Takeda, K.; Murai, J. Generating Network Intrusion Detection Dataset Based on Real and Encrypted Synthetic Attack Traffic. Appl. Sci. 2021, 11, 7868. [Google Scholar] [CrossRef]
- Hall, M.A. Correlation-Based Feature Subset Selection for Machine Learning. Available online: https://weka.sourceforge.io/doc.dev/weka/attributeSelection/CfsSubsetEval.html (accessed on 13 October 2022).
- Liu, H.; Setiono, R. A Probabilistic Approach to Feature Selection—A Filter Solution. Available online: https://weka.sourceforge.io/doc.stable/weka/attributeSelection/ConsistencySubsetEval.html (accessed on 13 October 2022).
- Mohammed, A.J.; Arif, M.H.; Ali, A.A. A Multilayer Perceptron Artificial Neural Network Approach for Improving the Accuracy of Intrusion Detection Systems. IAES Int. J. Artif. Intell. 2020, 9, 609–615. [Google Scholar] [CrossRef]
- Huang, J.; Liu, J. Intrusion Detection System Based on Multi-Layer Perceptron Neural Network and Decision Tree. In Proceedings of the 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China, 18–20 October 2012; pp. 188–190. [Google Scholar] [CrossRef]
- Rosay, A.; Riou, K.; Carlier, F.; Leroux, P. Multi-Layer Perceptron for Network Intrusion Detection: From a Study on Two Recent Data Sets to Deployment on Automotive Processor. Ann. Telecommun. Telecommun. 2022, 77, 371–394. [Google Scholar] [CrossRef]
- Florencio, F.D.A.; Moreno, E.D.; Macedo, H.; Salgueiro, R.J.P.D.B.; Do Nascimento, F.B.; Santos, F.A.O. Intrusion Detection via Multilayer Perceptron Using a Low Power Device. In Proceedings of the Euro American Conference on Telematics and Information Systems, Fortaleza, Brazil, 12–15 November 2018. [Google Scholar] [CrossRef]
- Catania, C.A.; Garino, C.G. Automatic Network Intrusion Detection: Current Techniques and Open Issues. Comput. Electr. Eng. 2012, 38, 1062–1072. [Google Scholar] [CrossRef]
- Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Elejla, O.E.; Anbar, M.; Belaton, B.; Hamouda, S. Labeled Flow-Based Dataset of ICMPv6-Based DDoS Attacks. Neural Comput. Appl. 2019, 31, 3629–3646. [Google Scholar] [CrossRef]
- Hu, T.; Liu, X.; Chen, T.; Zhang, X.; Huang, X.; Niu, W.; Lu, J.; Zhou, K.; Liu, Y. Transaction-Based Classification and Detection Approach for Ethereum Smart Contract. Inf. Process. Manag. 2021, 58, 102462. [Google Scholar] [CrossRef]
- Cantone, D.; Omodeo, E.; Policriti, A. Set Theory for Computing; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
Article | Technique | Performance Metrics | Findings | Limitations |
---|---|---|---|---|
[22] | SVM | Accuracy, FPR, TPR |
|
|
[23] | Nearest NeighborNaive BayesJ48 | TP, FP, Time |
|
|
[24] | Hierarchical clustering dendrogram | FPR, Detection Rate |
|
|
[25] | Bayesian networksNaïve BayesJ48 | Accuracy, FP, FN |
|
|
[26] | Decision Tree | TP, TN |
|
|
[6] | Neural Network | Accuracy, FPR |
|
|
[27] | K-NearestREP TreeSVM | Accuracy, Recall, FPR |
|
|
[28] | Decision Tree | Accuracy, Precision, FPR, TPR |
|
|
[17] | MultiBoostABDecisionStump | Accuracy, FPR, TPR |
|
|
Dataset | Description | Limitation |
---|---|---|
DCNDS [35] |
|
|
CTU-13 [36] |
|
|
VHS-22 [37] |
|
|
MTA-KDD-19 [38] |
|
|
TrendMicro [39] |
|
|
P2P-BDS [21] |
|
|
ISOR [40] |
|
|
ISOT [41] |
|
|
IP Address | Machine Role | Flow Direction |
---|---|---|
147.32.84.165 | Botmaster | To/From infected and non-infected machines |
147.32.84.165 | Bot | To/From other infected machines and rarely to benign machines |
147.32.84.191 | Bot | To/From botmaster and rarely to non-infected machines |
147.32.84.192 | Bot | To/From botmaster and rarely to non-infected machines |
Total number of records | 886,114 |
Category | Multi-class |
Classes | Botmaster, Bot, Normal |
Number of botmaster/bots records | 352,266 |
Number of normal records | 533,848 |
Number of features | 30 |
Feature Evaluator-Method | ||
---|---|---|
CFS Subset Evaluation | Consistency Subset Evaluation | |
Search method | Best First | Best First |
Search direction | Forward | Forward |
No. of subset evaluated | 171 | 178 |
Merit of best subset found | 0.866 | 1 |
No. of features selected | 3 | 2 |
Selected features | Source, Time to live, Epoch time | Source, Version |
Parameter | Value |
---|---|
Batch size | 100 |
Hidden Layers | 10 |
Learning Rate | 0.5 |
Momentum | 0.2 |
Training Time | 500 |
Article | Technique | Testing Approach | ACC (%) | FPR | Precision | Recall | F-Score | Others |
---|---|---|---|---|---|---|---|---|
[6] | NN | Cross-validation | 99.0 | 0.75 | - | - | - | - |
[27] | K-Nearest | Cross-validation | 76.5 79.1 | 0.06 | - | 0.82 0.85 | - | - |
REP Tree | Cross-validation | 96.1 97 | 0.01 0.02 | - | 0.96 0.97 | - | - | |
SVM | Cross-validation | 88 89 | 0.06 0.05 | - | 0.82 0.91 | - | - | |
Peer-Ambush | MLP | Percentage-split | 99.9 | 0.0 | 1.0 | 1.0 | 1.0 | TPR = 1.0 ROC area = 1.0 |
Cross-validation | 99.9 | 0.0 | 1.0 | 1.0 | 1.0 | TPR = 1.0 ROC area = 1.0 |
Technique | Accuracy (%) | FPR | Recall |
---|---|---|---|
DecisionStump | 82.1 | 0.040 | 0.82 |
AdaBoostAB | 95.4 | 0.009 | 1.0 |
SVM | 88.8 | 0.06 | 0.88 |
Neural Network | 91.81 | 0.016 | 0.91 |
MLP | 99.9 | 0.001 | 1.0 |
Using BFU | Without Using BFU | |
---|---|---|
Number of features | 4 | 30 |
Detection Accuracy (%0) | 99.9 | 96.5 |
FPR | 0.001 | 0.007 |
Precision | 1.0 | 0.96 |
Recall | 1.0 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabla, A.H.H.; Thamrin, A.H.; Anbar, M.; Manickam, S.; Karuppayah, S. PeerAmbush: Multi-Layer Perceptron to Detect Peer-to-Peer Botnet. Symmetry 2022, 14, 2483. https://doi.org/10.3390/sym14122483
Kabla AHH, Thamrin AH, Anbar M, Manickam S, Karuppayah S. PeerAmbush: Multi-Layer Perceptron to Detect Peer-to-Peer Botnet. Symmetry. 2022; 14(12):2483. https://doi.org/10.3390/sym14122483
Chicago/Turabian StyleKabla, Arkan Hammoodi Hasan, Achmad Husni Thamrin, Mohammed Anbar, Selvakumar Manickam, and Shankar Karuppayah. 2022. "PeerAmbush: Multi-Layer Perceptron to Detect Peer-to-Peer Botnet" Symmetry 14, no. 12: 2483. https://doi.org/10.3390/sym14122483
APA StyleKabla, A. H. H., Thamrin, A. H., Anbar, M., Manickam, S., & Karuppayah, S. (2022). PeerAmbush: Multi-Layer Perceptron to Detect Peer-to-Peer Botnet. Symmetry, 14(12), 2483. https://doi.org/10.3390/sym14122483