Some Properties of Janowski Symmetrical Functions
Abstract
:1. Introduction
2. A Set of Lemmas
3. Main Results
- We obtain , if we put .
- We obtain , if we put .
- Case 1
- , using Lemmas 1 and 3, for , we obtain
- Case 2
- , there is such that , and therefore
- (i)
- If , we have
- (ii)
- If , then
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Spaček, L. Prispevek k teorii funkei prostych. Cas. Pest. Mat. Fys 1933, 62, 12–19. [Google Scholar]
- Liczberski, P.; Połubiński, J. On (j,k)-symmetrical functions. Math. Bohem. 1995, 120, 13–28. [Google Scholar] [CrossRef]
- Alsarari, F.; Alzahrani, S. Convolution Properties of q-Janowski-Type Functions Associated with (x,y)-Symmetrical Functions. Symmetry 2022, 14, 1406. [Google Scholar] [CrossRef]
- AlSarari, F. Starlike Symmetrcal Functions. J. Appl. Eng. Math. 2020, 10, 1145–1154. [Google Scholar]
- Alsarari, F. Certain Subclass of Janowski Functions Associated with Symmetrical Functions. Ital. J. Pure Appl. Math. 2021, 46, 91–100. [Google Scholar]
- Polatoglu, Y. Growth and distortion theorem for the Janowski alpha-spirallike functions in the unit disc. Stud. Univ. Babes-Bolyai Math. 2012, 57, 255–259. [Google Scholar]
- Kwon, O.; Sim, Y. A certain subclass of Janowski type functions associated with ksymmetic points. Commun. Korean Math. Soc. 2013, 28, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Alsarari, F.; Latha, S. A few results on functions that are Janowski starlike related to (j,k)-symmetric points. Octag. Math. Mag. 2013, 21, 556–563. [Google Scholar]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Alsarari, F.; Latha, S.; Darus, M. A few results on Janowski functions associated with k-symmetric points. Korean J. Math. 2017, 25, 389–403. [Google Scholar] [CrossRef]
- Stankiewicz, J. Some remarks on functions starlike with respect to symmetric points. Ann. Univ. Mariae-Curie Skledowke 1965, 19, 53–59. [Google Scholar]
- Nezhmetdinov, I.R.; Ponnusamy, S. On the class of univalent functions starlike with respect to N-symmetric points. Hokkaido Math. J. 2002, 31, 61–77. [Google Scholar]
- Goodman, A.W. Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 1975, 8, 598–601. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsarari, F.; Alkhammash, A.; Deniz, E. Some Properties of Janowski Symmetrical Functions. Symmetry 2022, 14, 2526. https://doi.org/10.3390/sym14122526
Alsarari F, Alkhammash A, Deniz E. Some Properties of Janowski Symmetrical Functions. Symmetry. 2022; 14(12):2526. https://doi.org/10.3390/sym14122526
Chicago/Turabian StyleAlsarari, Fuad, Aljazi Alkhammash, and Erhan Deniz. 2022. "Some Properties of Janowski Symmetrical Functions" Symmetry 14, no. 12: 2526. https://doi.org/10.3390/sym14122526
APA StyleAlsarari, F., Alkhammash, A., & Deniz, E. (2022). Some Properties of Janowski Symmetrical Functions. Symmetry, 14(12), 2526. https://doi.org/10.3390/sym14122526