X-ray Self-Emission Imaging of Hydrodynamic Laser-Induced Astrophysical Phenomena
Abstract
:1. Introduction
2. Basic Aspects of Laser-Induced Plasma X-ray Imaging
2.1. Imaging of Laboratory Plasma without the Use of Dispersive Elements
2.2. Imaging Using Dispersing Elements
3. The Use of X-ray Images and Spectrograms with Spatial Resolution in Laboratory Astrophysical Plasma Research
3.1. Application of X-ray Pinhole Camera in Laboratory Astrophysics Experiments
3.2. Application of Dispersive X-ray Optics in Alboratory Astrophysics Experiments
3.2.1. 2D X-ray Imagers Based on Spherically-Bent Crystals at Small Angles of Incidence
3.2.2. 1D and 2D of Spectrometers Based on Spherical Crystals with Spectral Resolution
3.2.3. Investigations of Laboratory Astrophysical Plasma by X-ray Spectral Composition
3.2.4. Diffraction Gratings
4. Discussion and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basov, N.G.; Krokhin, O.N. Conditions for Heating up of a Plasma by the Radiation from an Optical Generator. Sov. Phys. JETP 1964, 19, 171–175. [Google Scholar]
- Revet, G.; Chen, S.N.; Bonito, R.; Khiar, B.; Filippov, E.; Argiroffi, C.; Higginson, D.P.; Orlando, S.; Béard, J.; Blecher, M.; et al. Laboratory Unravelling of Matter Accretion in Young Stars. Sci. Adv. 2017, 3, e1700982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigon, G.; Casner, A.; Albertazzi, B.; Michel, T.; Mabey, P.; Falize, E.; Ballet, J.; Van Box Som, L.; Pikuz, S.; Sakawa, Y.; et al. Rayleigh-Taylor Instability Experiments on the LULI2000 Laser in Scaled Conditions for Young Supernova Remnants. Phys. Rev. E 2019, 100, 021201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albertazzi, B.; Ciardi, A.; Nakatsutsumi, M.; Vinci, T.; Béard, J.; Bonito, R.; Billette, J.; Borghesi, M.; Burkley, Z.; Chen, S.N.; et al. Laboratory Formation of a Scaled Protostellar Jet by Coaligned Poloidal Magnetic Field. Science 2014, 346, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Drake, R.P.; Doss, F.W.; McClarren, R.G.; Adams, M.L.; Amato, N.; Bingham, D.; Chou, C.C.; DiStefano, C.; Fidkowski, K.; Fryxell, B.; et al. Radiative Effects in Radiative Shocks in Shock Tubes. High Energy Density Phys. 2011, 7, 130–140. [Google Scholar] [CrossRef]
- Falize, É.; Loupias, B.; Ravasio, A.; Gregory, C.D.; Dizière, A.; Koenig, M.; Michaut, C.; Cavet, C.; Barroso, P.; Leidinger, J.-P.P.; et al. The Scalability of the Accretion Column in Magnetic Cataclysmic Variables: The POLAR Project. Astrophys. Space Sci. 2011, 336, 81–85. [Google Scholar] [CrossRef]
- Egeland, A. Kristian Birkeland: The First Space Scientist. J. Atmos. Solar-Terr. Phys. 2009, 71, 1749–1755. [Google Scholar] [CrossRef]
- Ryutov, D.; Drake, R.P.; Kane, J.; Liang, E.; Remington, B.A.; Wood-Vasey, W.M. Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics. Astrophys. J. 1999, 518, 821–832. [Google Scholar] [CrossRef]
- Falize, É.; Michaut, C.; Bouquet, S. Similarity Properties and Scaling Laws of Radiation Hydrodynamic Flows in Laboratory Astrophysics. Astrophys. J. 2011, 730, 96. [Google Scholar] [CrossRef] [Green Version]
- Podgornyi, I.M.; Sagdeev, R.Z. Physics of Interplanetary Plasma and Laboratory Experiments. Sov. Phys. Uspekhi 1970, 12, 445–462. [Google Scholar] [CrossRef]
- Remington, B.A.; Drake, R.P.; Ryutov, D.D. Experimental Astrophysics with High Power Lasers and Z Pinches. Rev. Mod. Phys. 2006, 78, 755–807. [Google Scholar] [CrossRef]
- Ryutov, D.D.; Drake, R.P.; Remington, B.A. Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena. Astrophys. J. Suppl. Ser. 2000, 127, 465–468. [Google Scholar] [CrossRef]
- Lebedev, S.V.; Ciardi, A.; Ampleford, D.J.; Bland, S.N.; Bott, S.C.; Chittenden, J.P.; Hall, G.N.; Rapley, J.; Jennings, C.A.; Frank, A.; et al. Magnetic Tower Outflows from a Radial Wire Array Z-Pinch. Mon. Not. R. Astron. Soc. 2005, 361, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Ampleford, D.J.; Lebedev, S.V.; Ciardi, A.; Bland, S.N.; Bott, S.C.; Hall, G.N.; Naz, N.; Jennings, C.A.; Sherlock, M.; Chittenden, J.P.; et al. Supersonic Radiatively Cooled Rotating Flows and Jets in the Laboratory. Phys. Rev. Lett. 2008, 100, 035001. [Google Scholar] [CrossRef] [PubMed]
- Ciardi, A.; Lebedev, S.V.; Frank, A.; Suzuki-Vidal, F.; Hall, G.N.; Bland, S.N.; Harvey-Thompson, A.; Blackman, E.G.; Camenzind, M. Episodic Magnetic Bubbles and Jets: Astrophysical Implications from Laboratory Experiments. Astrophys. J. 2009, 691, L147–L150. [Google Scholar] [CrossRef]
- Hsu, S.C.; Bellan, P.M. Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation. Phys. Rev. Lett. 2003, 90, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellan, P.M.; You, S.; Hsu, S.C. Simulating Astrophysical Jets in Laboratory Experiments. In High Energy Density Laboratory Astrophysics; Springer: Dordrecht, The Netherlands, 2005; Volume 298, pp. 203–209. [Google Scholar]
- Faenov, A.Y.Y.; Skobelev, I.Y.Y.; Rosmej, F.B.B. High Resolution X-ray Spectroscopy of Laser Generated Plasmas. Phys. Scr. 1999, 80, 43–45. [Google Scholar] [CrossRef]
- Pikuz, S.A.; Shelkovenko, T.A.; Hammer, D.A. X-Pinch. Part I. Plasma Phys. Rep. 2015, 41, 291–342. [Google Scholar] [CrossRef]
- Thomas, C.; Rehm, G.; Martin, I.; Bartolini, R. X-ray Pinhole Camera Resolution and Emittance Measurement. Phys. Rev. Spec. Top.-Accel. Beams 2010, 13, 022805. [Google Scholar] [CrossRef] [Green Version]
- Albertazzi, B.; Falize, E.; Pelka, A.; Brack, F.; Kroll, F.; Yurchak, R.; Brambrink, E.; Mabey, P.; Ozaki, N.; Pikuz, S.; et al. Experimental Platform for the Investigation of Magnetized-Reverse-Shock Dynamics in the Context of POLAR. High Power Laser Sci. Eng. 2018, 6, e43. [Google Scholar] [CrossRef] [Green Version]
- Higginson, D.P.; Korneev, P.; Béard, J.; Chen, S.N.; d’Humières, E.; Pépin, H.; Pikuz, S.; Pollock, B.; Riquier, R.; Tikhonchuk, V.; et al. A Novel Platform to Study Magnetized High-Velocity Collisionless Shocks. High Energy Density Phys. 2015, 17, 190–197. [Google Scholar] [CrossRef]
- Casner, A.; Mailliet, C.; Rigon, G.; Khan, S.F.; Martinez, D.; Albertazzi, B.; Michel, T.; Sano, T.; Sakawa, Y.; Tzeferacos, P.; et al. From ICF to Laboratory Astrophysics: Ablative and Classical Rayleigh-Taylor Instability Experiments in Turbulent-like Regimes. Nucl. Fusion 2019, 59, 032002. [Google Scholar] [CrossRef]
- Meadowcroft, A.L.; Bentley, C.D.; Stott, E.N. Evaluation of the Sensitivity and Fading Characteristics of an Image Plate System for X-ray Diagnostics. Rev. Sci. Instrum. 2008, 79, 113102. [Google Scholar] [CrossRef]
- Joensen, K.D.; Voutov, P.; Szentgyorgyi, A.; Roll, J.; Gorenstein, P.; Høghøj, P.; Christensen, F.E. Design of Grazing-Incidence Multilayer Supermirrors for Hard-X-ray Reflectors. Appl. Opt. 1995, 34, 7935. [Google Scholar] [CrossRef]
- Wang, C.; An, H.H.; Xiong, J.; Fang, Z.H.; Wang, Y.W.; Zhang, Z.; Hua, N.; Sun, J.R.; Wang, W. A Pinhole Camera for Ultrahigh-Intensity Laser Plasma Experiments. Rev. Sci. Instrum. 2017, 88, 113501. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Gao, Y.; Zhang, X.; Lu, D.; Hu, W.; Gao, M.; Chen, W.; Zou, Y. High Resolution Flat Crystal Spectrometer for the Shanghai EBIT. Rev. Sci. Instrum. 2008, 79, 093101. [Google Scholar] [CrossRef]
- Baronova, E.O.; Stepanenko, M.M.; Pereira, N.R. Cauchois-Johansson X-ray Spectrograph for 1.5–400 KeV Energy Range. Rev. Sci. Instrum. 2001, 72, 1416–1420. [Google Scholar] [CrossRef] [Green Version]
- Higginson, D.P.; Khiar, B.; Revet, G.; Béard, J.; Blecher, M.; Borghesi, M.; Burdonov, K.; Chen, S.N.; Filippov, E.; Khaghani, D.; et al. Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet. Phys. Rev. Lett. 2017, 119, 255002. [Google Scholar] [CrossRef] [Green Version]
- Burdonov, K.; Revet, G.; Bonito, R.; Argiroffi, C.; Béard, J.; Bolanõs, S.; Cerchez, M.; Chen, S.N.; Ciardi, A.; Espinosa, G.; et al. Laboratory Evidence for an Asymmetric Accretion Structure upon Slanted Matter Impact in Young Stars. Astron. Astrophys. 2020, 642, A38. [Google Scholar] [CrossRef]
- Hoszowska, J.; Dousse, J.C.; Kern, J.; Rhême, C. High-Resolution von Hamos Crystal X-ray Spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 376, 129–138. [Google Scholar] [CrossRef]
- Skobelev, I.Y.; Faenov, A.Y.; Bryunetkin, B.A.; Dyakin, V.M. Investigating the Emission Properties of Plasma Structures with X-ray Imaging Spectroscopy. J. Exp. Theor. Phys. 1995, 81, 692–718. [Google Scholar]
- Faenov, A.Y.; Pikuz, S.A.; Erko, A.I.; Bryunetkin, B.A.; Dyakin, V.M.; Ivanenkov, G.V.; Mingaleev, A.R.; Pikuz, T.A.; Romanova, V.M.; Shelkovenko, T.A. High-Performance X-ray Spectroscopic Devices for Plasma Microsources Investigations. Phys. Scr. 1994, 50, 333–338. [Google Scholar] [CrossRef]
- Filippov, E.D.; Makarov, S.S.; Burdonov, K.F.; Yao, W.; Revet, G.; Béard, J.; Bolaños, S.; Chen, S.N.; Guediche, A.; Hare, J.; et al. Enhanced X-ray Emission Arising from Laser-Plasma Confinement by a Strong Transverse Magnetic Field. Sci. Rep. 2021, 11, 8180. [Google Scholar] [CrossRef] [PubMed]
- Condamine, F.P.; Filippov, E.; Angelo, P.; Pikuz, S.A.; Renner, O.; Rosmej, F.B. High-Resolution Spectroscopic Study of Hot Electron Induced Copper M-Shell Charge States Emission from Laser Produced Plasmas. High Energy Density Phys. 2019, 32, 89–95. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, H.; Shi, J.; Tang, C.; Liu, S. Shenye Liu High Resolution X-ray Spherically Bent Crystal Spectrometer for Laser-Produced Plasma Diagnostics. Chin. Opt. Lett. 2009, 7, 92–94. [Google Scholar] [CrossRef]
- Bitter, M.; Hill, K.W.; Efthimion, P.C.; Delgado-Aparicio, L.; Pablant, N.; Lu, J.; Beiersdorfer, P.; Chen, H. A New Spectrometer Design for the X-ray Spectroscopy of Laser-Produced Plasmas with High (Sub-Ns) Time Resolutiona). Rev. Sci. Instrum. 2014, 85, 11D627. [Google Scholar] [CrossRef]
- Pikuz, S.A.; Douglass, J.D.; Shelkovenko, T.A.; Sinars, D.B.; Hammer, D.A.C. Wide band focusing X-ray spectrograph with spatial resolution. Rev. Sci. Instrum. 2008, 79, 013106. [Google Scholar] [CrossRef]
- Koch, J.A.; Aglitskiy, Y.; Brown, C.; Cowan, T.; Freeman, R.; Hatchett, S.; Holland, G.; Key, M.; MacKinnon, A.; Seely, J.; et al. 4.5- and 8-KeV Emission and Absorption X-ray Imaging Using Spherically Bent Quartz 203 and 211 Crystals (Invited). Rev. Sci. Instrum. 2003, 74, 2130. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, J.; Mu, B.; Wang, X.; Li, M.; Li, W.; Pu, Y.; Ding, Y. Four-Channel Toroidal Crystal X-ray Imager for Laser-Produced Plasmas. Opt. Express 2021, 29, 6133–6146. [Google Scholar] [CrossRef]
- Pisani, F.; Koenig, M.; Batani, D.; Hall, T.; Desenne, D.; Bruneau, J.; Reverdin, C. Toroidal Crystal Spectrometer for Time-Resolved X-ray Absorption Diagnostic in Dense Plasmas. Rev. Sci. Instrum. 1999, 70, 3314. [Google Scholar] [CrossRef]
- Palmer, C. Diffraction Grating Handbook, 8th ed.; Loewen, E., Ed.; THERMO RGL: Rochester, NY, USA, 2020. [Google Scholar]
- Cone, K.V.; Dunn, J.; Schneider, M.B.; Baldis, H.A.; Brown, G.V.; Emig, J.; James, D.L.; May, M.J.; Park, J.; Shepherd, R.; et al. Development of a Time-Resolved Soft X-ray Spectrometer for Laser Produced Plasma Experimentsa). Rev. Sci. Instrum. 2010, 81, 10E318. [Google Scholar] [CrossRef] [Green Version]
- Fäustlin, R.R.; Zastrau, U.; Toleikis, S.; Uschmann, I.; Förster, E.; Tschentscher, T.H. A Compact Soft X-ray Spectrograph Combining High Efficiency and Resolution. J. Instrum. 2010, 5, P02004. [Google Scholar] [CrossRef]
- Kita, T.; Harada, T.; Nakano, N.; Kuroda, H. Mechanically Ruled Aberration-Corrected Concave Gratings for a Flat-Field Grazing-Incidence Spectrograph. Appl. Opt. 1983, 22, 512. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P. Grazing Incidence Optics for X-ray Astronomy: X-ray Optics. J. Opt. 2011, 40, 88–95. [Google Scholar] [CrossRef]
- Kozhevnikov, I.V.; Vinogradov, A.V. Multilayer X-ray Mirrors. J. Russ. Laser Res. 1995, 16, 343–385. [Google Scholar] [CrossRef]
- Hudec, R. Kirkpatrick-Baez (KB) and Lobster Eye (LE) Optics for Astronomical and Laboratory Applications. X-ray Opt. Instrum. 2010, 2010, 139148. [Google Scholar] [CrossRef]
- Marshall, F.J.; Bahr, R.E.; Goncharov, V.N.; Glebov, V.Y.; Peng, B.; Regan, S.P.; Sangster, T.C.; Stoeckl, C. A Framed, 16-Image Kirkpatrick–Baez X-ray Microscope. Rev. Sci. Instrum. 2017, 88, 093702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, S.; Zhang, Z.; Huang, Q.; Zhang, Z.; Wang, Z.; Wei, L.; Liu, D.; Cao, L.; Gu, Y. Note: Tandem Kirkpatrick–Baez Microscope with Sixteen Channels for High-Resolution Laser-Plasma Diagnostics. Rev. Sci. Instrum. 2018, 89, 036105. [Google Scholar] [CrossRef]
- Angel, J.R.P. Lobster Eyes as X-ray Telescopes. Astrophys. J. 1979, 233, 364. [Google Scholar] [CrossRef]
- Montel, M. X-ray Microscopy and Microradiography; Academic Press: New York, NY, USA, 1957; Volume 177. [Google Scholar]
- Lider, V.V. Kirkpatrick–Baez and Wolter X-ray Focusing Optics (Review). J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2019, 13, 670–682. [Google Scholar] [CrossRef]
- Mondal, B.; Vadawale, S.V.; Mithun, N.P.S.; Vaishnava, C.S.; Tiwari, N.K.; Goyal, S.K.; Panini, S.S.; Navalkar, V.; Karmakar, C.; Patel, M.R.; et al. DarpanX: A Python Package for Modeling X-ray Reflectivity of Multilayer Mirrors. Astron. Comput. 2021, 34, 100446. [Google Scholar] [CrossRef]
- Agafonov, Y.A.; Bryunetkin, B.A.; Erko, A.I.; Mingaleev, A.R.; Pikuz, S.A.; Romanova, V.T.; Skobelev, I.Y.; Faenov, A.Y.; Shelkovenko, T.A. Imaging Spectroscopy of Microscopic Plasmas by Means of a Mica Crystal with a Zone-Plate Surface Structure. Quantum Electron. 1993, 23, 172–174. [Google Scholar] [CrossRef]
- Aristov, V.V.; Erko, A.I. X-ray Optics; Nauka: Moscow, Russia, 1991. [Google Scholar]
- Aglitskiy, Y.; Obenschain, S.; Yunkin, V. Bent Bragg–Fresnel Lenses for X-ray Imaging Diagnostics. Rev. Sci. Instrum. 2003, 74, 2228. [Google Scholar] [CrossRef]
- Cauchon, G.; Pichet-Thomasset, M.; Sauneuf, R.; Dhez, P.; Idir, M.; Ollivier, M.; Troussel, P.; Boutin, J.Y.; Le Breton, J.P. Imaging of Laser Produced Plasma at 1.43 KeV Using Fresnel Zone Plate and Bragg–Fresnel Lens. Rev. Sci. Instrum. 1998, 69, 3186. [Google Scholar] [CrossRef]
- Pisarczyk, T.; Gus’kov, S.Y.; Zaras-Szydłowska, A.; Dudzak, R.; Renner, O.; Chodukowski, T.; Dostal, J.; Rusiniak, Z.; Burian, T.; Borisenko, N.; et al. Magnetized Plasma Implosion in a Snail Target Driven by a Moderate-Intensity Laser Pulse. Sci. Rep. 2018, 8, 17895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, J.; Li, Y.; Wang, X.; Wang, J.; Dong, Q.; Xiao, C.; Wang, S.; Liu, X.; Zhang, L.; An, L.; et al. Modelling Loop-Top X-ray Source and Reconnection Outflows in Solar Flares with Intense Lasers. Nat. Phys. 2010, 6, 984–987. [Google Scholar] [CrossRef]
- Bohlin, H.; Brack, F.E.; Cervenak, M.; Chodukowski, T.; Cikhardt, J.; Dostál, J.; Dudžák, R.; Hubner, J.; Huo, W.; Jelinek, S.; et al. Radiative Characterization of Supersonic Jets and Shocks in a Laser-Plasma Experiment. Plasma Phys. Control. Fusion 2021, 63, 045026. [Google Scholar] [CrossRef]
- Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Rohlena, K.; Skala, J.; Hora, H. Stable Dense Plasma Jets Produced at Laser Power Densities around 1014W/cm2. Phys. Plasmas 2006, 13, 062704. [Google Scholar] [CrossRef]
- Kasperczuk, A.; Pisarczyk, T.; Demchenko, N.N.; Gus’Kov, S.Y.; Kalal, M.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; et al. Experimental and Theoretical Investigations of Mechanisms Responsible for Plasma Jets Formation at PALS. Laser Part. Beams 2009, 27, 415–427. [Google Scholar] [CrossRef]
- Kasperczuk, A.; Pisarczyk, T.; Nicolai, P.; Stenz, C.; Tikhonchuk, V.; Kalal, M.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; et al. Investigations of Plasma Jet Interaction with Ambient Gases by Multi-Frame Interferometric and X-ray Pinhole Camera Systems. Laser Part. Beams 2009, 27, 115–122. [Google Scholar] [CrossRef]
- Bott, A.F.A.; Chen, L.; Tzeferacos, P.; Palmer, C.A.J.; Bell, A.R.; Bingham, R.; Birkel, A.; Froula, D.H.; Katz, J.; Kunz, M.W.; et al. Insensitivity of a Turbulent Laser-Plasma Dynamo to Initial Conditions. Matter Radiat. Extrem. 2022, 7, 046901. [Google Scholar] [CrossRef]
- Bott, A.F.A.; Tzeferacos, P.; Chen, L.; Palmer, C.A.J.; Rigby, A.; Bell, A.R.; Bingham, R.; Birkel, A.; Graziani, C.; Froula, D.H.; et al. Time-Resolved Turbulent Dynamo in a Laser Plasma. Proc. Natl. Acad. Sci. USA 2021, 118, e2015729118. [Google Scholar] [CrossRef] [PubMed]
- Dozières, M.; Hansen, S.; Forestier-Colleoni, P.; McGuffey, C.; Kawahito, D.; Bailly-Grandvaux, M.; Bhutwala, K.; Krauland, C.M.; Wei, M.S.; Gourdain, P.; et al. Characterization of an Imploding Cylindrical Plasma for Electron Transport Studies Using X-ray Emission Spectroscopy. Phys. Plasmas 2020, 27, 023302. [Google Scholar] [CrossRef]
- Filippov, E.D.; Pikuz, S.A.; Skobelev, I.Y.; Ryazantsev, S.N.; Higginson, D.P.; Khaghani, D.; Revet, G.; Chen, S.N.; Fuchs, J. Parameters of Supersonic Astrophysically-Relevant Plasma Jets Collimating via Poloidal Magnetic Field Measured by X-ray Spectroscopy Method. J. Phys. Conf. Ser. 2016, 774, 012114. [Google Scholar] [CrossRef]
- Higginson, D.P.; Revet, G.; Khiar, B.; Béard, J.; Blecher, M.; Borghesi, M.; Burdonov, K.; Chen, S.N.; Filippov, E.; Khaghani, D.; et al. Detailed Characterization of Laser-Produced Astrophysically-Relevant Jets Formed via a Poloidal Magnetic Nozzle. High Energy Density Phys. 2017, 23, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Revet, G.; Khiar, B.; Filippov, E.; Argiroffi, C.; Béard, J.; Bonito, R.; Cerchez, M.; Chen, S.N.; Gangolf, T.; Higginson, D.P.; et al. Laboratory Disruption of Scaled Astrophysical Outflows by a Misaligned Magnetic Field. Nat. Commun. 2021, 12, 762. [Google Scholar] [CrossRef]
- Tun, S.D.; Vourlidas, A. Derivation of the Magnetic Field in a Coronal Mass Ejection Core via Multi-Frequency Radio Imaging. Astrophys. J. 2013, 766, 130. [Google Scholar] [CrossRef] [Green Version]
- Argiroffi, C.; Reale, F.; Drake, J.J.; Ciaravella, A.; Testa, P.; Bonito, R.; Miceli, M.; Orlando, S.; Peres, G. A Stellar Flare−Coronal Mass Ejection Event Revealed by X-ray Plasma Motions. Nat. Astron. 2019, 3, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Sunyaev, R.A.; Shakura, N.I.; Zilitinkevich, S.S. On the Turbulent Energy Transport in Accretion Discs. Astron. Astrophys. 1978, 62, 179–187. [Google Scholar]
- Filippov, E.D.; Skobelev, I.Y.; Revet, G.; Chen, S.N.; Khiar, B.; Ciardi, A.; Khaghani, D.; Higginson, D.P.; Pikuz, S.A.; Fuchs, J. X-ray Spectroscopy Evidence for Plasma Shell Formation in Experiments Modeling Accretion Columns in Young Stars. Matter Radiat. Extrem. 2019, 4, 064402. [Google Scholar] [CrossRef] [Green Version]
- Alkhimova, M.A.; Faenov, A.Y.; Skobelev, I.Y.; Pikuz, T.A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A.S.; Sagisaka, A.; Dover, N.P.; Kondo, K.; et al. High Resolution X-ray Spectra of Stainless Steel Foils Irradiated by Femtosecond Laser Pulses with Ultra-Relativistic Intensities. Opt. Express 2017, 25, 29501. [Google Scholar] [CrossRef]
- Ryazantsev, S.N.; Skobelev, I.Y.; Faenov, A.Y.; Pikuz, T.A.; Grum-Grzhimailo, A.N.; Pikuz, S.A. X-ray Spectroscopy Diagnostics of a Recombining Plasma in Laboratory Astrophysics Studies. JETP Lett. 2015, 102, 707–712. [Google Scholar] [CrossRef]
- MacFarlane, J.J.; Golovkin, I.E.; Woodruff, P.R.; Welch, D.R.; Oliver, B.V.; Melhorn, T.A.; Campbell, R.B.; Mehlhorn, T.A.; Campbell, R.B. Simulation of the Ionization Dynamics of Aluminum Irradiated by Intense Short-Pulse Lasers. Proc. Inert. Fusion Sci. Appl. (Am. Nucl. Soc. La Grange Park. IL) 2003, 457, 1–4. [Google Scholar]
- Burdonov, K.F. Ambient Plasma Impact onto Accretion Dynamics of YSOs Modelled in the Laboratory. 2023, manuscript in preparation.
- Fujioka, S.; Takabe, H.; Yamamoto, N.; Salzmann, D.; Wang, F.; Nishimura, H.; Li, Y.; Dong, Q.; Wang, S.; Zhang, Y.; et al. X-ray Astronomy in the Laboratory with a Miniature Compact Object Produced by Laser-Driven Implosion. Nat. Phys. 2009, 5, 821–825. [Google Scholar] [CrossRef]
- Fujioka, S.; Nishimura, H.; Takabe, H.; Yamamoto, N.; Nishihara, K.; Salzmann, D.; Norimatsu, T.; Miyanaga, N.; Mima, K.; Azechi, H.; et al. Laser-Produced Plasmas as Unique X-ray Souces for Industry and Astrophysics. J. Phys. Conf. Ser. 2010, 244, 012001. [Google Scholar] [CrossRef]
- Yi, S.Z.; Dong, J.Q.; Jiang, L.; Huang, Q.S.; Guo, E.F.; Wang, Z.S. Simultaneous High-Resolution X-ray Backlighting and Self-Emission Imaging for Laser-Produced Plasma Diagnostics Using a Two-Energy Multilayer Kirkpatrick–Baez Microscope. Matter Radiat. Extrem. 2021, 7, 015902. [Google Scholar] [CrossRef]
- Bolanos, S.; Sladkov, A.; Smets, R.; Chen, S.N.; Grisollet, A.; Filippov, E.; Henares, J.L.; Nastasa, V.; Pikuz, S.; Riquier, R.; et al. Laboratory Evidence of Magnetic Reconnection Hampered in Obliquely Interacting Flux Tubes. Nat. Commun. 2022, 13, 6426. [Google Scholar] [CrossRef]
- Wang, X.-F.F.; Wang, J.-Y.Y.; Chen, X.-H.H.X.-G.G.; Chen, X.-H.H.X.-G.G.; Wei, L. Large Field-of-View X-ray Imaging by Using a Fresnel Zone Plate. Laser Part. Beams 2012, 30, 87–93. [Google Scholar] [CrossRef]
- Bitter, M.; Hill, K.W.; Gao, L.; Kraus, B.F.; Efthimion, P.C.; Delgado-Aparicio, L.; Pablant, N.; Stratton, B.; Schneider, M.; Coppari, F.; et al. A New Toroidal X-ray Crystal Spectrometer for the Diagnosis of High Energy Density Plasmas at the National Ignition Facility. Rev. Sci. Instrum. 2018, 89, 10F118. [Google Scholar] [CrossRef] [PubMed]
- Shiraga, H.; Miyanaga, N.; Heya, M.; Nakasuji, M.; Aoki, Y.; Azechi, H.; Yamanaka, T.; Mima, K. Ultrafast Two-Dimensional X-ray Imaging with X-ray Streak Cameras for Laser Fusion Research (Invited). Rev. Sci. Instrum. 1998, 68, 745. [Google Scholar] [CrossRef]
- Gregory, C.D.; Dizière, A.; Aoki, H.; Tanji, H.; Ide, T.; Falize, É.; Loupias, B.; Michaut, C.; Morita, T.; Pikuz, S.A.; et al. Experiments to Investigate the Effects of Radiative Cooling on Plasma Jet Collimation. High Energy Density Phys. 2014, 11, 12–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippov, E.D.; Burdonov, K.F.; Pikuz, T.A.; Skobelev, I.Y. X-ray Self-Emission Imaging of Hydrodynamic Laser-Induced Astrophysical Phenomena. Symmetry 2022, 14, 2536. https://doi.org/10.3390/sym14122536
Filippov ED, Burdonov KF, Pikuz TA, Skobelev IY. X-ray Self-Emission Imaging of Hydrodynamic Laser-Induced Astrophysical Phenomena. Symmetry. 2022; 14(12):2536. https://doi.org/10.3390/sym14122536
Chicago/Turabian StyleFilippov, Evgeny D., Konstantin F. Burdonov, Tatiana A. Pikuz, and Igor Yu. Skobelev. 2022. "X-ray Self-Emission Imaging of Hydrodynamic Laser-Induced Astrophysical Phenomena" Symmetry 14, no. 12: 2536. https://doi.org/10.3390/sym14122536
APA StyleFilippov, E. D., Burdonov, K. F., Pikuz, T. A., & Skobelev, I. Y. (2022). X-ray Self-Emission Imaging of Hydrodynamic Laser-Induced Astrophysical Phenomena. Symmetry, 14(12), 2536. https://doi.org/10.3390/sym14122536