Assessing Parameters of the Coplanar Components of Perturbing Accelerations Using the Minimal Number of Optical Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variants of the Problems Being Solved
2.1.1. Basic Problem Statement
2.1.2. Equations for the Velocity Impulse Influence
2.1.3. Determination of Deviations Along the Radius and Along the Orbit Using Observations
2.1.4. Possible Variants of the Problems Being Solved
- A transversal velocity impulse is performed. Its application angle φ and the magnitude of the transversal component ΔVt should be determined. There are two unknown variables in the problem, hence, one pair of Δr and Δn (α and δ) is enough for its solution. It is the most frequently met problem;
- The same as above but the impulse is radial. The problem in this statement is solved in some rare special cases;
- A velocity impulse with the transversal and radial components is performed. Its application angle φ and the magnitudes of the transversal and radial components ΔVt and ΔVr should be determined. There are three unknown variables in the problem, hence, two pairs of deviations Δr and Δn are needed for its solution;
- A long-duration transversal maneuver is performed. The angular duration of the maneuver Δφ, the angle which corresponds to its medium point φm and the constant acceleration of the maneuvering space object during the maneuver wt should be found. There are three unknown variables in the problem, hence, two pairs of deviations Δr and Δn are needed for its solution;
- A long-duration maneuver with the transversal and radial components is performed. The angular duration of the maneuver Δφ, the angle which corresponds to its medium point φm and the transversal wt and radial wr constant accelerations are to be derived. There are four unknown variables in the problem, hence, two pairs of deviations Δr and Δn (α and δ) are needed for its solution.
2.2. Small-Duration Maneuver Parameters Assessment
2.2.1. Transversal and Radial Velocity Impulse Assessment
2.2.2. Assessment of the Velocity Impulse with Transversal and Radial Components
2.3. Long-Duration Maneuver Parameters Assessment
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mcintyre, G.; Hintz, K. Comparison of several maneuvering target tracking models. In Proceedings of the SPIE—The International Society for Optical Engineering 3374, Orlando, FL, USA, 13–15 April 1998. [Google Scholar] [CrossRef]
- Li, X.R.; Jilkov, V.P. Survey of Maneuvering Target Tracking. Part I. Dynamic Models. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1333–1364. [Google Scholar] [CrossRef]
- Hujsak, R.S. Orbit Determination During High Thrust and Low Thrust Maneuvers; AAS 05-1 36; Analytical Graphics Inc.: Exton, PA, USA, 2002. [Google Scholar]
- Woodburn, J.; Carrico, J.; Wright, J.R. Estimation of Instantaneous Maneuvers Using a Fixed Interval Smoother. Adv. Astronaut. Sci. 2003, 116, 243–260. [Google Scholar]
- Bai, X.; Liao, C.; Pan, X.; Xu, M. Mining Two-Line Element Data to Detect Orbital Maneuver for Satellite. IEEE Access 2019, 7, 129537–129550. [Google Scholar] [CrossRef]
- Mukundan, A.; Wang, H.-C. Simplified Approach to Detect Satellite Maneuvers Using TLE Data and Simplified Perturbation Model Utilizing Orbital Element Variation. Appl. Sci. 2021, 11, 10181. [Google Scholar] [CrossRef]
- Clark, R.; Lee, R. Parallel processing for orbital maneuver detection. Adv. Space Res. 2020, 66, 444–449. [Google Scholar] [CrossRef]
- Huang, J.; Hu, W.; Zhang, L. Maneuver detection of space object for space surveillance. In Proceedings of the 6th European Conference on Space Debris, Darmstadt, Germany, 22–25 April 2013. [Google Scholar]
- Folcik, Z.; Cefola, P.; Abbot, R. GEO maneuver detection for space situational awareness (AAS 07-285). Adv. Astronaut. Sci. 2008, 129, 523. [Google Scholar]
- Serra, R.; Yanez, C.; Frueh, C. Tracklet-to-orbit association for maneuvering space objects using optimal control theory. Acta Astronaut. 2021, 181, 271–281. [Google Scholar] [CrossRef]
- Jaunzemis, A.D.; Mathew, M.V.; Holzinger, M.J. Control cost and Mahalanobis distance binary hypothesis testing for spacecraft maneuver detection. J. Guid. Control Dyn. 2016, 39, 2058–2072. [Google Scholar] [CrossRef] [Green Version]
- Guang, Z.; Xingzi, B.; Hanyu, Z.; Bin, L. Non-cooperative maneuvering spacecraft tracking via a variable structure estimator. Aerosp. Sci. Technol. 2018, 79, 352–363. [Google Scholar] [CrossRef]
- Kelecy, T.; Jah, M. Detection and orbit determination of a satellite executing low thrust maneuvers. Acta Astronaut. 2010, 66, 79. [Google Scholar] [CrossRef]
- Bergmann, C.M.; Zollo, A.; Herzog, J.; Schildknecht, T. Integrated Manoeuvre Detection and Estimation Using Nonlinear Kalman Filters During Orbit Determination of Satellites. In Proceedings of the 8th European Conference on Space Debris, Darmstadt, Germany, 20–23 April 2021. [Google Scholar]
- Escribano, G.; Sanjurjo-Rivo, M.; Siminski, J.A.; Pastor, A.; Escobar, D. Automatic maneuver detection and tracking of space objects in optical survey scenarios based on stochastic hybrid systems formulation. arXiv 2021, arXiv:2109.07801. [Google Scholar] [CrossRef]
- Siminski, J.; Fiedler, H.; Flohrer, T. Correlation of Observations and Orbit Recovery Considering Maneuvers. In Proceedings of the AAS/AIAA Space Flight Mechanics, San Antonio, TX, USA, 5–9 February 2017. [Google Scholar]
- Hill, K. Maneuver detection and estimation with optical tracklets. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 9–12 September 2014; p. E26. [Google Scholar]
- Kamensky, S.; Tuchin, A.; Stepanyants, V.; Alfriend, K.T. Algorithm of Automatic Detection and Analysis of non-Evolutionary Changes in Orbital Motion of Geocentric Objects. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, PA, USA, 9–13 August 2009; Paper AAS 09-103. pp. 1–34. [Google Scholar]
- Baranov, A.A.; Vikhrachev, V.O.; Karatunov, M.O.; Razumnyi, Y.N. Estimates of Near-Circular Orbits after a Single Correction: A Geometrical Method. J. Comput. Syst. Sci. Int. 2017, 56, 137–145. [Google Scholar] [CrossRef]
- Baranov, A. Spacecraft Manoeuvring in the Vicinity of a Near-Circular Orbit; Cambridge Scholars Publishing: Cambridge, UK, 2022; 520p. [Google Scholar]
- Baranov, A.A.; De Prado, A.F.; Razumny, V.Y.; Baranov, A.A. Optimal Low-thrust Transfers Between Close Near-Circular Coplanar Orbits. Cosm. Res. 2011, 3, 269–279. [Google Scholar] [CrossRef]
- El’yasberg, P.E. Introduction to the Theory of Flight of Artificial Earth Satellites; Gurevich, U.G., Ed.; Israel Program of Scientific Translation: Jerusalem, Israel, 1967; 357p. [Google Scholar]
Maneuver Parameters | Traditional Method | With the Uncertainty Accountancy | Reference (Actual Values) |
---|---|---|---|
∆Vt (m/s) | −0.392 | 0.419 | 0.419 |
Maneuver application time | 18 h 7 min 33 s | 18 h 8 min 17 s | 18 h 9 min 54 s |
Parameter | Value |
---|---|
Time of the initial conditions setting | t0 = 2022.04.11 16:37:08.950 (GMT+3) |
Time of the maneuver | 2022.04.12 08:18:25.000 |
Maneuver magnitude | ΔVt = −0.112 m/s |
The angle between the maneuver and the observation | Δφ = 178.381° |
Date | Time | Δr | Δn |
---|---|---|---|
12 April 2022 | 20:08:18.543 | −6.05975 | 13.73975 |
12 April 2022 | 20:08:29.543 | −5.59847 | 13.83167 |
12 April 2022 | 20:08:40.543 | −5.67197 | 13.78066 |
12 April 2022 | 20:08:51.543 | −5.81142 | 13.64288 |
12 April 2022 | 20:09:02.543 | −5.93997 | 13.86445 |
12 April 2022 | 20:09:13.543 | −6.30605 | 13.82325 |
12 April 2022 | 20:09:24.543 | −5.61857 | 13.73580 |
12 April 2022 | 20:09:35.543 | −6.14954 | 13.73975 |
12 April 2022 | 20:09:46.543 | −6.10882 | 13.66814 |
12 April 2022 | 20:09:57.543 | −6.01462 | 13.79292 |
Parameter | Value |
---|---|
Performance date | 22 June 2021 |
Time of the maneuver start | 23:17:30 |
Duration of the burn | 465.5 s |
Velocity impulse magnitude | 0.246 m/s |
Time of the impulsive maneuver (the middle of the burn duration) | 23:21:22.75 |
Maneuver application angle (from the moment of the initial conditions setting) | 170.75° |
Acceleration | 0.000529 m/s2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranov, A.; Agapov, V.; Golosova, N.; Karatunov, M. Assessing Parameters of the Coplanar Components of Perturbing Accelerations Using the Minimal Number of Optical Observations. Symmetry 2022, 14, 2564. https://doi.org/10.3390/sym14122564
Baranov A, Agapov V, Golosova N, Karatunov M. Assessing Parameters of the Coplanar Components of Perturbing Accelerations Using the Minimal Number of Optical Observations. Symmetry. 2022; 14(12):2564. https://doi.org/10.3390/sym14122564
Chicago/Turabian StyleBaranov, Andrey, Vladimir Agapov, Natalya Golosova, and Maksim Karatunov. 2022. "Assessing Parameters of the Coplanar Components of Perturbing Accelerations Using the Minimal Number of Optical Observations" Symmetry 14, no. 12: 2564. https://doi.org/10.3390/sym14122564
APA StyleBaranov, A., Agapov, V., Golosova, N., & Karatunov, M. (2022). Assessing Parameters of the Coplanar Components of Perturbing Accelerations Using the Minimal Number of Optical Observations. Symmetry, 14(12), 2564. https://doi.org/10.3390/sym14122564