Some New Results for the Kampé de Fériet Function with an Application
Abstract
:1. Introduction
- (a)
- Statistical distribution theory related to beta, gamma, and normal distributions
- (b)
- Communications engineering;
- (c)
- Theory of Lie algebras and Lie groups;
- (d)
- Integral transforms (including integral equations);
- (e)
- Perturbation theory;
- (f)
- Decision theory, etc.
2. Three Results for the Terminating Series
3. A New Transformation Formula
4. Six Results for the Reducibility of the Kampé de Fériet Function
5. Conclusions
- (a)
- Three new results for the terminating generalized hypergeometric function of arguments 1 and 2;
- (b)
- A new transformation formula for a generalized hypergeometric function. The result has been expressed in terms of the difference between two Kampé de Fériet functions;
- (c)
- As an application, by employing the well-known beta integral method, an identity;
- (d)
- Six reduction formulas for the Kampé de Fériet function.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Order Estimate for the Kampé de Fériet Functions in (23)
References
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; reprinted by Chelsea Publishing Company, New York, NY, USA, 1971. [Google Scholar]
- Kummer, E.E. Über die hypergeometrische Reihe F(a; b; x). J. Reine angew. Math. 1836, 15, 39–83. [Google Scholar]
- Bailey, W.N. Products of generalised hypergeometric series. Proc. London Math. Soc. 1928, 28, 242–254. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.; Marichev, O.I. Integrals and Series, Vol.3, More Special Functions; Gordon and Breach: New York, NY, USA, 1990. [Google Scholar]
- Kim, Y.S.; Rathie, A.K.; Paris, R.B. Evaluations of some terminating hypergeometric 2F1(2) series with applications. Turk. J. Math. 2018, 42, 2563–2575. [Google Scholar] [CrossRef]
- Krattenthaler, C.; Rao, K.S. Automatic generation of hypergeometric identities by the beta integral method. J. Comput. Appl. Math. 2003, 160, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Rathie, A.K. Two formulas contiguous to a quadratic transformation due to Kummer with an application. Hacettepe J. Math. Stat. 2011, 40, 885–894. [Google Scholar]
- Ibraim, M.A.; Rakha, M.A.; Rathie, A.K. On certain hypergeometric identities deducible using the beta integral method. Adv. Differ. Equa. 2013, 341. [Google Scholar] [CrossRef] [Green Version]
- Progri, I.F. The computation of a 2F2 hypergeometric function. J. Geolocation -Geo-Inf. -Geo-Intell. 2020, 2020071601. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; John Wiley and Sons (Halsted Press): New York, NY, USA; Ellis Horwood: Chichester, UK, 1985. [Google Scholar]
- Exton, H. Multiple Hypergeometric Functions and Applications; John Wiley and Sons (Halsted Press): New York, NY, USA; Ellis Horwood: Chichester, UK, 1976. [Google Scholar]
- Exton, H. Handbook of Hypergeometric Integrals, Theory, Applications, Tables, Computer Programs; John Wiley and Sons (Halsted Press): New York, NY, USA; Ellis Horwood: Chichester, UK, 1978. [Google Scholar]
- Hai, N.T.; Marichev, O.I.; Srivastava, H.M. A note on the convergence of certain families of multiple hypergeometric series. J. Math. Anal. Appl. 1992, 164, 104–115. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Paris, R.B.; Rathie, A.K. Some New Results for the Kampé de Fériet Function with an Application. Symmetry 2022, 14, 2588. https://doi.org/10.3390/sym14122588
Kim I, Paris RB, Rathie AK. Some New Results for the Kampé de Fériet Function with an Application. Symmetry. 2022; 14(12):2588. https://doi.org/10.3390/sym14122588
Chicago/Turabian StyleKim, Insuk, Richard B. Paris, and Arjun K. Rathie. 2022. "Some New Results for the Kampé de Fériet Function with an Application" Symmetry 14, no. 12: 2588. https://doi.org/10.3390/sym14122588
APA StyleKim, I., Paris, R. B., & Rathie, A. K. (2022). Some New Results for the Kampé de Fériet Function with an Application. Symmetry, 14(12), 2588. https://doi.org/10.3390/sym14122588