A Note on Certain General Transformation Formulas for the Appell and the Horn Functions
Abstract
:1. Introduction
- (i)
- Converges for all if ;
- (ii)
- Converges for all if ;
- (iii)
- Diverges for all z, if .
- (i)
- Absolutely convergent for , if ;
- (ii)
- Conditionally convergent for , if ;
- (iii)
- Divergent for if .
2. Preliminaries
3. Transformation Formulas between Appell Functions and
Corollaries
4. Transformation Formulas between Appell Functions and Horn Function
Corollaries
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Appell, P. Sur les Fonctions hypérgéometriques de Plusieurs Variables; Mémoir Sci. Math., Gauthier-Villars: Paris, France, 1925. [Google Scholar]
- Horn, J. Hypergeometrische funktionen zweier veränderlichen. Math. Ann. 1931, 105, 381–407. [Google Scholar] [CrossRef]
- Erdélyi, A. Transformation of hypergeometric functions of two variables. Proc. R. Soc. Edinb. 1948, 62, 378–385. [Google Scholar] [CrossRef]
- Bailey, W.N. On the sum of a terminating 3F2(1). Quart. J. Math. Oxf. 1953, 4, 237–240. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press; Ellis Horwood; John Willey & Sons: Chichester, UK; New York, NY, USA; Brisbane, Australis; Toronto, ON, USA, 1985. [Google Scholar]
- Rathie, A.K.; Nagar, V. On Kummer’s second theorem involving product of generalized hypergeometric series. Le Mathematiche 1995, 50, 35–38. [Google Scholar]
- Kim, Y.S.; Rakha, M.A.; Rathie, A.K. Generalization of Kummer’s second theorem with applications. Comput. Math. Math. Phys. 2010, 50, 387–402. [Google Scholar] [CrossRef]
- Mathur, R.; Solanki, N.S. Transformation formulas of Appell series F2 with contiguous extensions. J. Gujrat Res. Soc. 2019, 21, 336–340. [Google Scholar]
- Mathur, R.; Solanki, N.S. On the transformation formulas of Appell hypergeometric function F2. J. Gujrat Res. Soc. 2019, 21, 2590–2596. [Google Scholar]
- Mohammed, A.O.; Rakha, M.A.; Rathie, A.K. A note on certain transfotmation formulas related to Appell, Horn and Kampé de Fériet functions. Commun. Korean Math. Soc. 2023, Accepted for publication.
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Vol. 3, More Special Functions; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Opps, S.B.; Saad, N.; Srivastava, H.M. Recursion formulas for Appells hypergeometric function F2 with some applications to radiation field problems. Appl. Math. Comput. 2009, 207, 545–558. [Google Scholar]
- Guseinov, I.I.; Mamedov, B.N. Calculation of the generalized Hubbell rectangular source integrals using binomial coefficients. Appl. Math. Comput. 2005, 161, 285–292. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory; Pergamon Press: London, UK, 1981. [Google Scholar]
- Madajczyk, J.L.; Trippenbach, M. Singular part of the hydrogen dipole matrix element. J. Phys. A Math. Gen. 1989, 22, 2369–2374. [Google Scholar] [CrossRef]
- Schlsser, M.J. Multiple Hypergeometric Series-Appell series and beyond, Computer Algebra in Quantum Field Theory; Springer: Vienna, Austria, 2013; pp. 305–324. [Google Scholar]
- Shpot, M.A. A massive Feynman integral and some reduction relations for Appell function. J. Math. Phys. 2007, 48, 123512–123525. [Google Scholar] [CrossRef]
- Colomb, R.M.; Cheng, C.Y.C. Very fast decision table execution of propositional expert systems. In Proceedings of the 8th National Conference of Artificial Intelligence (AAAI-90), Boston, MA, USA, 29 July–3 August 1990; pp. 671–676. [Google Scholar]
- Minoux, M. A simplified Linear-time unit resolution algorithm for Horn formulae and computer implementation. Inf. Process. Lett. 1988, 29, 1–12. [Google Scholar] [CrossRef]
- Naguyen, T.A.; Perkins, W.A.; Laffey, T.J.; Pecora, D. Checking an expert systems knowledge base for consistency and completeness. IJCAI 1985, 29, 375–378. [Google Scholar]
- Brychkov, Y.A.; Saad, N. Some formulas for the Appell function F1(a, b, b′; c; w, z). Integral Transform. Spec. Funct. 2012, 23, 793–802, Corrigendum in Integral Transform. Spec. Funct. 2012, 23, 863. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Saad, N. Some formulas for the Appell function F2(a, b, b′; c, c′; w, z). Integral Transform. Spec. Funct. 2014, 25, 111–123. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Saad, N. Some formulas for the Appell function F3(a, a′, b, b′; c; w, z). Integral Transform. Spec. Funct. 2015, 26, 910–923. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Reduction formulas for the Appell and Humbert functions. Integral Transform. Spec. Funct. 2017, 28, 22–38. [Google Scholar] [CrossRef]
- Brychkov, Y.A. On some formulas for the Appell function F4(a, b; c, c′; w, z). Integral Transform. Spec. Funct. 2017, 28, 629–644. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Kim, Y.S.; Rathie, A.K. On new reduction formulas for the Humbert functions Ψ2, Φ2 and Φ3. Integral Transform. Spec. Funct. 2017, 28, 350–360. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N. On some formulas for the Horn functions H1(a, b, c; w, z) and H1(c)(a; b, d; w, z). Integral Transform. Spec. Funct. 2021, 32, 31–47. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N. On some formulas for the Horn functions H2(a, b, c, c′; d; w, z) and H2(c)(a, b, c; d; w, z). Integral Transform. Spec. Funct. 2021, 32, 253–270. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N. On some formulas for the Horn functions H3(a, b; c; w, z) and H6(c)(a; c; w, z) and Humbert function Ψ3(b; c; w, z). Integral Transform. Spec. Funct. 2021, 32, 661–676. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N. On some formulas for the Horn functions H4(a, b; c, c′; w, z) and H7(c)(a; c, c′; w, z). Integral Transform. Spec. Funct. 2021, 32, 969–987. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N. On some formulas for the Horn functions H5(a, b; c; w, z) and H5(c)(a; c; w, z). Integral Transform. Spec. Funct. 2021, 33, 373–387. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N. On some formulas for the Horn functions H6(a, b; c; w, z) and H8(c)(a; b; w, z). Integral Transform. Spec. Funct. 2021, 33, 651–667. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N. On some formulas for the Horn functions H7(a, b; b′; w, z). Integral Transform. Spec. Funct. 2021, 33, 899–907. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Rathie, A.K. A Note on Certain General Transformation Formulas for the Appell and the Horn Functions. Symmetry 2023, 15, 696. https://doi.org/10.3390/sym15030696
Kim I, Rathie AK. A Note on Certain General Transformation Formulas for the Appell and the Horn Functions. Symmetry. 2023; 15(3):696. https://doi.org/10.3390/sym15030696
Chicago/Turabian StyleKim, Insuk, and Arjun K. Rathie. 2023. "A Note on Certain General Transformation Formulas for the Appell and the Horn Functions" Symmetry 15, no. 3: 696. https://doi.org/10.3390/sym15030696
APA StyleKim, I., & Rathie, A. K. (2023). A Note on Certain General Transformation Formulas for the Appell and the Horn Functions. Symmetry, 15(3), 696. https://doi.org/10.3390/sym15030696