A Theoretical Development of Cubic Pythagorean Fuzzy Soft Set with Its Application in Multi-Attribute Decision Making
Abstract
:1. Introduction
- Decision makers (DMs) may lack precise or sufficient information about the problem.
2. Preliminaries
2.1. Fuzzy Set
2.2. Interval-Valued Fuzzy Set
2.3. Cubic Set
2.4. Fuzzy Soft Set
2.5. Interval-Valued Fuzzy Soft Set
2.6. Cubic Soft Sets
2.7. Intuitionistic Fuzzy Set
2.8. Pythagorean Fuzzy Set
2.9. Pythagorean Fuzzy Soft Set
3. Cubic Pythagorean Fuzzy Soft Set
Interval-Valued Pythagorean Fuzzy Soft Set
4. Cubic Pythagorean Fuzzy Soft Set
4.1. Positive-Internal Cubic Pythagorean Fuzzy Soft Set
4.2. Negative-Internal of Cubic Pythagorean Fuzzy SoftSets
4.3. Internal Cubic Pythagorean Fuzzy Soft Set
Theorem 1
4.4. Positive-External of Cubic Pythagorean Fuzzy Soft Set
4.5. Negative-External of Cubic Pythagorean Fuzzy Soft Sets
4.6. External Cubic Pythagorean Fuzzy Soft Set
4.7. Theorem
4.8. Set Operators on Cubic Pythagorean Fuzzy Soft Set
4.8.1. Addition
4.8.2. Multiplication
4.8.3. Union
4.8.4. Intersection
4.8.5. Direct Sum
4.8.6. Direct Product
5. Distance Measures
- 1.
- 2.
- if and only if
- 3.
- 4.
- If , then and .
6. Development of a Decision-Support System Using Cubic Pythagorean Fuzzy Soft Set
- Step 1: Consider to be a set of “n” alternatives and to be the “m” criteria for each alternative. The ratings of every alternative are represented with the help of .
- Step 2: are used to assign weights j = 1, 2, …, m; k = 1, 2, …, p to various criteria for a certain group. The weights can be initiated in matrix form as follows:
- Step 3: In Step 3, calculate the distances between the alternative ratings and the applicable criterion’s weights. The relation between the alternatives and the different groups in matrix form can be created as follows:
- Step 4: If the distance between the alternatives is smaller, it means that the option is closer to the relevant group. As a result, the alternatives can be ranked based on their lowest distance from the reference set.
7. Developing a Medical Decision-Support System for Presenting a Tentative Diagnosis Based Reference Symptomatic Set
- The symptom “Headache” can cause Headaches, Seizures, Vision Changes, Hearing Changes, Drooping of the face.
- The symptom “nausea” can cause a new mole or a change in an existing mole. A sore that does not heal, Jaundice (yellowing of the skin and whites of the eyes).
- The symptom “Dietary Problems” can cause pain after eating, such as belly pain, nausea and vomiting, and appetite changes.
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Jun, Y.B.; Kim, C.S.; Yang, K.O. Cubic sets. Ann. Fuzzy Math. Inform. 2012, 4, 83–98. [Google Scholar]
- Atanasov, K.T. Intuitionistic fuzzy sets Fuzzy sets and systems. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Herrera-Viedma, E.; Chiclana, F.; Herrera, F.; Alonso, S. Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans. Syst. Man Cybern. Part (Cybern.) 2007, 37, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Deschrijver, G.; Kerre, E.E. On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst. 2003, 136, 333–361. [Google Scholar] [CrossRef]
- Atanassov, K.T. Interval valued intuitionistic fuzzy sets. In Intuitionistic Fuzzy Sets; Physica: Heidelberg, Germany, 1999; pp. 139–177. [Google Scholar]
- Herrera, F.; Martinez, L.; Sánchez, P.J. Managing non-homogeneous information in group decision making. Eur. J. Oper. Res. 2005, 166, 115–132. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic preference relations and their application in group decision making. Inf. Sci. 2007, 177, 2363–2379. [Google Scholar] [CrossRef]
- Atanassov, K.T. Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1994, 64, 159–174. [Google Scholar] [CrossRef]
- Bustince, H.; Burillo, P. Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1995, 74, 237–244. [Google Scholar] [CrossRef]
- Hong, D.H. A note on correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1998, 95, 113–117. [Google Scholar] [CrossRef]
- Mondal, T.K.; Samanta, S.K. Topology of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 119, 483–494. [Google Scholar] [CrossRef]
- Deschrijver, G.; Kerre, E.E. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 2003, 133, 227–235. [Google Scholar] [CrossRef]
- Xu, Z.-S. On similarity measures of interval-valued intuitionistic fuzzy sets and their application to pattern recognitions. J. Southeast Univ. (English Ed.) 2007, 23, 139–143. [Google Scholar]
- Kaur, G.; Garg, H. Multi-attribute decision-making based on Bonferroni mean operators under cubic intuitionistic fuzzy set environment. Entropy 2018, 20, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, G.; Garg, H. Cubic intuitionistic fuzzy aggregation operators. Int. J. Uncertain. Quantif. 2018, 8, 405–427. [Google Scholar] [CrossRef]
- Molodtsov, D. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Ma, J.; Wang, S.; Hao, G. Vague soft sets and their properties. Comput. Math. Appl. 2010, 59, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lin, T.Y.; Yang, J.; Li, Y.; Yu, D. Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 2009, 58, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Muhiuddin, G.; Abdullah, M.A.-R. Cubic soft sets with applications in BCK/BCI-algebras. Ann. Fuzzy Math. Inform. 2014, 8, 291–304. [Google Scholar]
- Maji, P.K.; Roy, A.R.; Biswas, R. On intuitionistic fuzzy soft sets. J. Fuzzy Math. 2004, 12, 669–684. [Google Scholar]
- Yin, Y.; Li, H.; Jun, Y.B. On algebraic structure of intuitionistic fuzzy soft sets. Comput. Math. Appl. 2012, 64, 2896–2911. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Tang, Y.; Chen, Q.; Liu, H.; Tang, J. Interval-valued intuitionistic fuzzy soft sets and their properties. Comput. Math. Appl. 2010, 60, 906–918. [Google Scholar] [CrossRef] [Green Version]
- Smarandache, F. Extension of soft set to hypersoft set, and then to plithogenic hypersoft set. Neutrosophic Sets Syst. 2018, 22, 168–170. [Google Scholar]
- Babu, V.A.; Malleswari, V.S.N. Intuitionistic fuzzy soft cubic relations. Adv. Appl. Math. Sci. 2021, 20, 1021–1030. [Google Scholar]
- Grattan-Guinness, I. Fuzzy membership mapped onto intervals and many-valued quantities. Math. Log. Q. 1976, 22, 149–160. [Google Scholar] [CrossRef]
- Jahn, K.-U. Intervall-wertige Mengen. Math. Nachrichten 1975, 68, 115–132. [Google Scholar] [CrossRef]
- Sambuc, R.; Fonctions, F. Application l’Aide au Diagnostic en Pathologie Thyroidienne; Faculté de Médecine de Marseille, Aix-Marseille Université: Marseille, France, 1975. [Google Scholar]
- Maji, P.K.; Biswas, R.K.; Roy, A. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2013, 22, 958–965. [Google Scholar] [CrossRef]
- Athira, T.M.; John, S.J.; Garg, H. A novel entropy measure of Pythagorean fuzzy soft sets. AIMS Math. 2020, 5, 1050–1061. [Google Scholar] [CrossRef]
- Peng, X.D.; Yang, Y.; Song, J.; Jiang, Y. Pythagorean fuzzy soft set and its application. Comput. Eng. 2015, 41, 224–229. [Google Scholar]
COVID-19 | Influenza | MERS | |
---|---|---|---|
0.248834 | 0.315241 | 0.276466 | |
0.139259 | 0.202290 | 0.261941 | |
0.268221 | 0.271515 | 0.223328 | |
0.245311 | 0.280575 | 0.221784 |
COVID-19 | Influenze | MERS | |
---|---|---|---|
0.184449 | 0.237599 | 0.208339 | |
0.102225 | 0.145189 | 0.188153 | |
0.200005 | 0.184449 | 0.160375 | |
0.175375 | 0.193894 | 0.157226 |
COVID-19 | Influenza | MERS | |
---|---|---|---|
0.207778 | 0.226111 | 0.245 | |
0.107222 | 0.168333 | 0.232222 | |
0.196111 | 0.218889 | 0.161111 | |
0.179444 | 0.246667 | 0.176667 |
COVID-19 | Influenza | MERS | |
---|---|---|---|
0.313165 | 0.421545 | 0.360085 | |
0.183530 | 0.277779 | 0.344399 | |
0.328549 | 0.378329 | 0.278548 | |
0.285239 | 0.366394 | 0.280436 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, M.; Saeed, M.H.; Shafaqat, R.; Sessa, S.; Ishtiaq, U.; di Martino, F. A Theoretical Development of Cubic Pythagorean Fuzzy Soft Set with Its Application in Multi-Attribute Decision Making. Symmetry 2022, 14, 2639. https://doi.org/10.3390/sym14122639
Saeed M, Saeed MH, Shafaqat R, Sessa S, Ishtiaq U, di Martino F. A Theoretical Development of Cubic Pythagorean Fuzzy Soft Set with Its Application in Multi-Attribute Decision Making. Symmetry. 2022; 14(12):2639. https://doi.org/10.3390/sym14122639
Chicago/Turabian StyleSaeed, Muhammad, Muhammad Haris Saeed, Rimsha Shafaqat, Salvatore Sessa, Umar Ishtiaq, and Ferdinando di Martino. 2022. "A Theoretical Development of Cubic Pythagorean Fuzzy Soft Set with Its Application in Multi-Attribute Decision Making" Symmetry 14, no. 12: 2639. https://doi.org/10.3390/sym14122639
APA StyleSaeed, M., Saeed, M. H., Shafaqat, R., Sessa, S., Ishtiaq, U., & di Martino, F. (2022). A Theoretical Development of Cubic Pythagorean Fuzzy Soft Set with Its Application in Multi-Attribute Decision Making. Symmetry, 14(12), 2639. https://doi.org/10.3390/sym14122639