Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder
Abstract
:1. Introduction
1.1. Is Hemispheric Lateralization Uniquely Human?
1.2. Ancestral Origins of Hemispheric Lateralization
1.3. Genetic and Environmental Contributions to the Development of Human Brain Asymmetry
2. Evolution in the Context of ASD
2.1. Evolutionary Advantages of Human Accelerated Genomic Regions in ASD
2.2. The Functionality of Half a Cortex at a Time
2.3. Dancing Asymmetrically: Timing of Asymmetry and Lateralization
3. Asymmetrical Brain Development in Autism Spectrum Disorders
3.1. The Corpus Callosum Supporting Integrated Symmetric Behavior and Efficiencies of Timing in an Asymmetric System
3.2. Cerebral Connectivity and the Corpus Callosum in ASD
3.3. Corpus Callosum Asymmetry
3.4. Cerebral Asymmetry in Autism
3.5. Environmental Influences on Synaptogenesis and the Corpus Callosum in General and on Asymmetry in ASD in Particular
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Finnerty, J.R.; Pang, K.; Burton, P.; Paulson, D.; Martindale, M.Q. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 2004, 304, 1335–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Striedter, G.F.; Northcutt, R.G. Brains through Time: A Natural History of Vertebrates; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Vallortigara, G.; Rogers, L.J. survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 2005, 28, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Vallortigara, G. Laterality for the next decade: Computational ethology and the search for minimal condition for cognitive asymmetry. Laterality 2021, 26, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.R.; Hanlon, F.M.; Shaff, N.A.; Stephenson, D.D.; Ling, J.M.; Dodd, A.B.; Hogeveen, J.; Quinn, D.K.; Ryman, S.G.; Pirio-Richardson, S. Evidence for asymmetric inhibitory activity during motor planning phases of sensorimotor synchronization. Cortex 2020, 129, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Marchant, L.F.; McGrew, W.C. Human handedness: An ethological perspective. Hum. Evol. 1998, 13, 221–228. [Google Scholar] [CrossRef]
- Calcraft, P.R.; Bell, A.T.; Husbands, P.; Philippides, A.; Niven, J.E. The evolution of handedness: Why are ant colonies left-and right-handed? Biomath Commun. 2016, 3, 589. [Google Scholar]
- Corballis, M.C. Humanity and the left hemisphere: The story of half a brain. Laterality 2021, 26, 19–33. [Google Scholar] [CrossRef]
- Naghizadeh, M.; Mohajerani, M.H.; Whishaw, I.Q. Mouse Arm and hand movements in grooming are reaching movements: Evolution of reaching, handedness, and the thumbnail. Behav. Brain Res. 2020, 393, 112732. [Google Scholar] [CrossRef]
- Stor, T.; Rebstock, G.A.; Borboroglu, P.G.; Boersma, P.D. Lateralization (handedness) in Magellanic penguins. PeerJ 2019, 7, e6936. [Google Scholar] [CrossRef]
- Adreani, N.M.; Valcu, M.; Scientists, C.; Mentesana, L. Asymmetric architecture is non-random and repeatable in a bird’s nests. Curr. Biol. 2022, 32, R412–R413. [Google Scholar] [CrossRef]
- McManus, C. Half a century of handedness research: Myths, truths; fictions, facts; backwards, but mostly forwards. Brain Neurosci. Adv. 2019, 3, 2398212818820513. [Google Scholar] [CrossRef] [PubMed]
- Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: London, UK, 2013. [Google Scholar]
- Hopkins, W.D.; Reamer, L.; Mareno, M.C.; Schapiro, S.J. Genetic basis in motor skill and hand preference for tool use in chimpanzees (Pan troglodytes). Proc. R. Soc. B Biol. Sci. 2015, 282, 20141223. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C.; Häberling, I.S. The Many Sides of Hemispheric Asymmetry: A Selective Review and Outlook. J. Int. Neuropsychol. Soc. 2017, 23, 710–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Robles, A.; Hopkins, W.D.; Schapiro, S.J.; Sherwood, C.C. The heritability of chimpanzee and human brain asymmetry. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, L.J.; Andrew, R. (Eds.) Comparative Vertebrate Lateralization; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Palmer, A.R. Symmetry Breaking and the Evolution of Development. Science 2004, 306, 828–833. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C. The evolution and genetics of cerebral asymmetry. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 867–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, J. The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann. N. Y. Acad. Sci. 1977, 299, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Rogers-ramachandran, D.I. The Power of Symmetry. Sci. Am. 2009, 20, 20–22. [Google Scholar] [CrossRef]
- Stancher, G.; Sovrano, V.A.; Vallortigara, G. Motor asymmetries in fishes, amphibians, and reptiles. Prog. Brain Res. 2018, 238, 33–56. [Google Scholar] [CrossRef]
- Blum, M.; Ott, T. Animal left–right asymmetry. Curr. Biol. 2018, 28, R301–R304. [Google Scholar] [CrossRef] [Green Version]
- Duboc, V.; Dufourcq, P.; Blader, P.; Roussigné, M. Asymmetry of the Brain: Development and Implications. Annu. Rev. Genet. 2015, 49, 647–672. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Sánchez, M.; Prieto, I.; Segarra, A.B.; Banegas, I.; Martínez-Cañamero, M.; Domínguez-Vías, G.; de Gasparo, M. Brain Asymmetry: Towards an Asymmetrical Neurovisceral Integration. Symmetry 2021, 13, 2409. [Google Scholar] [CrossRef]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain Lateralization: A Comparative Perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef] [PubMed]
- Zucca, P.; Sovrano, V.A. Animal lateralization and social recognition: Quails use their left visual hemifield when approaching a companion and their right visual hemifield when approaching a stranger. Cortex 2008, 44, 13–20. [Google Scholar] [CrossRef]
- Gazzaniga, M.S. Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 2000, 123, 1293–1326. [Google Scholar] [CrossRef] [Green Version]
- Zaidel, E. The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Corballis, M.C. Of mice and men–and lopsided birds. Cortex 2008, 44, 3–7. [Google Scholar] [CrossRef]
- Eterovick, P.C.; Sloss, B.L.; Scalzo, J.A.; Alford, R.A. Isolated frogs in a crowded world: Effects of human-caused habitat loss on frog heterozygosity and fluctuating asymmetry. Biol. Conserv. 2016, 195, 52–59. [Google Scholar] [CrossRef]
- Miletto Petrazzini, M.E.; Sovrano, V.A.; Vallortigara, G.; Messina, A. Brain and behavioral asymmetry: A lesson from fish. Front. Neuroanat. 2020, 14, 11. [Google Scholar] [CrossRef]
- McGilchrist, I. Reciprocal organization of the cerebral hemispheres. Dialog- Clin. Neurosci. 2010, 12, 503–515. [Google Scholar] [CrossRef]
- Neubauer, S.; Gunz, P.; Scott, N.A.; Hublin, J.-J.; Mitteroecker, P. Evolution of brain lateralization: A shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes. Sci. Adv. 2020, 6, eaax9935. [Google Scholar] [CrossRef] [Green Version]
- Babcock, L.E. Trilobite malformations and the fossil record of behavioral asymmetry. J. Paléontol. 1993, 67, 217–229. [Google Scholar] [CrossRef]
- Reisz, R.R.; MacDougall, M.J.; LeBlanc, A.R.; Scott, D.; Nagesan, R.S. Lateralized Feeding Behavior in a Paleozoic Reptile. Curr. Biol. 2020, 30, 2374–2378.e4. [Google Scholar] [CrossRef] [PubMed]
- Hirnstein, M.; Hausmann, M.; Güntürkün, O. The evolutionary origins of functional cerebral asymmetries in humans: Does lateralization enhance parallel processing? Behav. Brain Res. 2008, 187, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Santarnecchi, E.; Tatti, E.; Rossi, S.; Serino, V.; Rossi, A. Intelligence-related differences in the asymmetry of spontaneous cerebral activity. Hum. Brain Mapp. 2015, 36, 3586–3602. [Google Scholar] [CrossRef] [PubMed]
- Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 1993, 55, 349–374. [Google Scholar] [CrossRef]
- Oram, M.W.; Hatsopoulos, N.G.; Richmond, B.J.; Donoghue, J.P. Excess Synchrony in Motor Cortical Neurons Provides Redundant Direction Information with That from Coarse Temporal Measures. J. Neurophysiol. 2001, 86, 1700–1716. [Google Scholar] [CrossRef] [Green Version]
- Koutsoukos, E.; Maillis, A.; Papageorgiou, C.; Gatzonis, S.; Stefanis, C.; Angelopoulos, E. The persistent and broadly distributed EEG synchronization might inhibit the normal processing capability of the human brain. Neurosci. Lett. 2015, 609, 137–141. [Google Scholar] [CrossRef]
- Corballis, M.C. Evolution of cerebral asymmetry. Prog. Brain Res. 2019, 250, 153–178. [Google Scholar] [CrossRef]
- Holloway, R.L. The evolution of the hominid brain. Handb. Paleoanthropology 2015, 3. [Google Scholar] [CrossRef]
- Dimond, S.J. Symmetry and asymmetry in the vertebrate brain 1. In Brain, Behaviour and Evolution; Routledge: London, UK, 2018; pp. 189–218. [Google Scholar]
- Wang, S.S.; Kloth, A.D.; Badura, A. The cerebellum, sensitive periods, and autism. Neuron 2014, 83, 518–532. [Google Scholar] [CrossRef] [Green Version]
- Karbe, H.; Herholz, K.; Halber, M.; Heiss, W.-D. Collateral Inhibition of Transcallosal Activity Facilitates Functional Brain Asymmetry. J. Cereb. Blood Flow Metab. 1998, 18, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; MacKenzie-Graham, A.; Toga, A.W.; Luders, E. Shifting brain asymmetry: The link between meditation and structural lateralization. Soc. Cogn. Affect. Neurosci. 2014, 10, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboitiz, F.; Montiel, J.F. One hundred million years of interhemispheric communication: The history of the corpus callosum. Braz. J. Med. Biol. Res. 2003, 36, 409–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, P.; Forkel, S.J.; de Schotten, M.T. Mapping the principal gradient onto the corpus callosum. NeuroImage 2020, 223, 117317. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Miller, K.L.; Moeller, S.; Xu, J.; Auerbach, E.J.; Woolrich, M.W.; Beckmann, C.F.; Jenkinson, M.; Andersson, J.; Glasser, M.F.; et al. Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. USA 2012, 109, 3131–3136. [Google Scholar] [CrossRef] [Green Version]
- Gallen, C.L.; D’Esposito, M. Brain Modularity: A Biomarker of Intervention-related Plasticity. Trends Cogn. Sci. 2019, 23, 293–304. [Google Scholar] [CrossRef]
- David, M.; Lavandier, M.; Grimault, N. Sequential streaming, binaural cues and lateralization. J. Acoust. Soc. Am. 2015, 138, 3500–3512. [Google Scholar] [CrossRef]
- Behrmann, M.; Plaut, D.C. A vision of graded hemispheric specialization. Ann. N. Y. Acad. Sci. 2015, 1359, 30–46. [Google Scholar] [CrossRef]
- Brosnan, M.B.; Demaria, G.; Petersen, A.; Dockree, P.M.; Robertson, I.H.; Wiegand, I. Plasticity of the Right-Lateralized Cognitive Reserve Network in Ageing. Cereb. Cortex 2018, 28, 1749–1759. [Google Scholar] [CrossRef] [Green Version]
- Delafield-Butt, J.; Trevarthen, C. On the brainstem origin of autism: Disruption to movements of the primary self. In Autism; CRC Press: Boca Raton, FL, USA, 2017; pp. 119–138. [Google Scholar]
- Floris, D.L.; Lai, M.; Auer, T.; Lombardo, M.V.; Ecker, C.; Chakrabarti, B.; Wheelwright, S.J.; Bullmore, E.T.; Murphy, D.G.; Baron-Cohen, S.; et al. Atypically rightward cerebral asymmetry in male adults with autism stratifies individuals with and without language delay. Hum. Brain Mapp. 2016, 37, 230–253. [Google Scholar] [CrossRef] [Green Version]
- Cochet, H. Manual asymmetries and hemispheric specialization: Insight from developmental studies. Neuropsychologia 2016, 93, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Melillo, R.; Leisman, G. Neurobehavioral Disorders of Childhood: An Evolutionary Perspective; Springer Media: New York, NY, USA, 2009. [Google Scholar]
- Asenova, I.V. Brain Lateralization and Developmental Disorders: A New Approach to Unified Research; Routledge: London, UK, 2018. [Google Scholar]
- Schmitz, J.; Metz, G.A.; Güntürkün, O.; Ocklenburg, S. Beyond the genome—Towards an epigenetic understanding of handedness ontogenesis. Prog. Neurobiol. 2017, 159, 69–89. [Google Scholar] [CrossRef]
- Zhong, S.; He, Y.; Shu, H.; Gong, G. Developmental changes in topological asymmetry between hemispheric brain white matter networks from adolescence to young adulthood. Cerebral Cortex. 2017, 27, 2560–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tooley, U.A.; Bassett, D.S.; Mackey, A.P. Environmental influences on the pace of brain development. Nat. Rev. Neurosci. 2021, 22, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Liu, C.-Y.; Hayashi, Y. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep. Neurosci. Res. 2017, 118, 3–12. [Google Scholar] [CrossRef]
- Mascetti, G.G. Unihemispheric sleep and asymmetrical sleep: Behavioral, neurophysiological, and functional perspectives. Nat. Sci. Sleep 2016, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Lyamin, O.I.; Siegel, J.M. Sleep in aquatic mammals. In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2019; Volume 30, pp. 375–393. [Google Scholar]
- Wright, A.J.; Akamatsu, T.; Mouritsen, K.N.; Sveegaard, S.; Dietz, R.; Teilmann, J. Silent porpoise: Potential sleeping behaviour identified in wild harbour porpoises. Anim. Behav. 2017, 133, 211–222. [Google Scholar] [CrossRef]
- Francks, C. Exploring human brain lateralization with molecular genetics and genomics. Ann. N. Y. Acad. Sci. 2015, 1359, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Güntürkün, O.; Ocklenburg, S. Ontogenesis of lateralization. Neuron 2017, 94, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C.; Beale, I.L. The Psychology of Left and Right; Routledge: London, UK, 2020. [Google Scholar]
- Chiron, C.; Jambaque, I.; Nabbout, R.; Lounes, R.; Syrota, A.; Dulac, O. The right brain hemisphere is dominant in human infants. Brain A J. Neurol. 1997, 120, 1057–1065. [Google Scholar] [CrossRef] [Green Version]
- Schore, A.N. Effects of a secure attachment relationship on right brain development, affect regulation, and infant mental health. Infant Ment. Health J. 2001, 22, 7–66. [Google Scholar] [CrossRef]
- McManus, I.C.; Bryden, M.P. The genetics of handedness, cerebral dominance, and lateralization. In Handbook of Neuropsychology; Rapin, I., Segalowitz, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 6, pp. 115–144. [Google Scholar]
- Courchesne, E.; Pierce, K.; Schumann, C.M.; Redcay, E.; Buckwalter, J.A.; Kennedy, D.P.; Morgan, J. Mapping Early Brain Development in Autism. Neuron 2007, 56, 399–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, N.; Palaniyappan, L.; Linli, Z.; Guo, S. Abnormal hemispheric asymmetry of both brain function and structure in attention deficit/hyperactivity disorder: A meta-analysis of individual participant data. Brain Imaging Behav. 2022, 16, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Cantiani, C.; Ortiz-Mantilla, S.; Riva, V.; Piazza, C.; Bettoni, R.; Musacchia, G.; Molteni, M.; Marino, C.; Benasich, A.A. Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial risk for language and learning impairment. NeuroImage Clin. 2019, 22, 101778. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J. Asymmetry of brain and behavior in animals: Its development, function, and human relevance. Genesis 2014, 52, 555–571. [Google Scholar] [CrossRef]
- Chiandetti, C.; Galliussi, J.; Andrew, R.J.; Vallortigara, G. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci. Rep. 2013, 3, 2701. [Google Scholar] [CrossRef] [Green Version]
- Barton, R.A. How did brains evolve? Nature 2002, 415, 134–135. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Gunturkun, O. The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- D’Souza, H.; Cowie, D.; Karmiloff-Smith, A.; Bremner, A.J. Specialization of the motor system in infancy: From broad tuning to selectively specialized purposeful actions. Dev. Sci. 2017, 20, e12409. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.J.; Dodge, S.; Miller, J.; Bohrer, G. Towards an integrated science of movement: Converging research on animal movement ecology and human mobility science. Int. J. Geogr. Inf. Sci. 2019, 33, 855–876. [Google Scholar] [CrossRef] [Green Version]
- Llinás, R.R. I of the Vortex: From Neurons to Self; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Schwartz, A.B. Movement: How the Brain Communicates with the World. Cell 2016, 164, 1122–1135. [Google Scholar] [CrossRef] [Green Version]
- Macvarish, J.; Lee, E.; Lowe, P. The ‘first three years’ movement and the infant brain: A review of critiques. Sociol. Compass 2014, 8, 792–804. [Google Scholar] [CrossRef]
- Haaland, K.Y.; Harrington, D.L. Hemispheric asymmetry of movement. Curr. Opin. Neurobiol. 1996, 6, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.W. Brain Asymmetry and Neural Systems: Foundations in Clinical Neuroscience and Neuropsychology; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Hepper, P.G. The developmental origins of laterality: Fetal handedness. Dev. Psychobiol. 2013, 55, 588–595. [Google Scholar] [CrossRef]
- Kasprian, G.; Del Río, M.; Prayer, D. Fetal diffusion imaging: Pearls and solutions. Top. Magn. Reson. Imaging 2010, 21, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Kasprian, G.; Langs, G.; Brugger, P.C.; Bittner, M.; Weber, M.; Arantes, M.; Prayer, D. The Prenatal Origin of Hemispheric Asymmetry: An In Utero Neuroimaging Study. Cereb. Cortex 2011, 21, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, N.; Levitsky, W. Human Brain: Left-Right Asymmetries in Temporal Speech Region. Science 1968, 161, 186–187. [Google Scholar] [CrossRef]
- Wada, J.A.; Clarke, R.; Hamm, A. Cerebral hemispheric asymmetry in humans: Cortical speech zones in 100 adult and 100 infant brains. Arch. Neurol. 1975, 32, 239–246. [Google Scholar] [CrossRef]
- Chi, J.G.; Dooling, E.C.; Gilles, F.H. Left-Right Asymmetries of the Temporal Speech Areas of the Human Fetus. Arch. Neurol. 1977, 34, 346–348. [Google Scholar] [CrossRef]
- Foundas, A.L.; Leonard, C.M.; Gilmore, R.; Fennell, E.; Heilman, K.M. Planum temporale asymmetry and language dominance. Neuropsychologia 1994, 32, 1225–1231. [Google Scholar] [CrossRef]
- Catani, M.; Allin, M.P.G.; Husain, M.; Pugliese, L.; Mesulam, M.M.; Murray, R.M.; Jones, D.K. Symmetries in human brain language pathways correlate with verbal recall. Proc. Natl. Acad. Sci. USA 2007, 104, 17163–17168. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Patoine, C.; Abu-Khalil, A.; Visvader, J.; Sum, E.; Cherry, T.J.; Orkin, S.H.; Geschwind, D.H.; Walsh, C.A. Early Asymmetry of Gene Transcription in Embryonic Human Left and Right Cerebral Cortex. Science 2005, 308, 1794–1798. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.B.; Kawasawa, Y.I.; Mason, C.E.; Krsnik, Ž.; Coppola, G.; Bogdanović, D.; Geschwind, D.H.; Mane, S.M.; State, M.W.; Šestan, N. Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis. Neuron 2009, 62, 494–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, L.J. A Matter of Degree: Strength of Brain Asymmetry and Behaviour. Symmetry 2017, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Vallortigara, G.; Chiandetti, C.; Sovrano, V.A. Brain asymmetry (animal). Wiley Interdiscip. Rev. Cogn. Sci. 2011, 2, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Machado, C.; Melillo, R. Cortical Visual Impairment in Childhood: ‘Blindsight’ and the Sprague Effect Revisited. Brain Sci. 2021, 11, 1279. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.; Schijven, D.; Francks, C. Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. Mol. Psychiatry 2021, 26, 7652–7660. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, S.; Gong, X.; Edmiston, E.K.; Zhong, S.; Li, C.; Zhao, P.; Wei, S.; Jiang, X.; Qin, Y.; et al. Associations between hemispheric asymmetry and schizophrenia-related risk genes in people with schizophrenia and people at a genetic high risk of schizophrenia. Br. J. Psychiatry 2021, 219, 392–400. [Google Scholar] [CrossRef]
- Pullman, L.E.; Refaie, N.; Lalumière, M.L.; Krupp, D. Is Psychopathy a Mental Disorder or an Adaptation? Evidence From a Meta-Analysis of the Association Between Psychopathy and Handedness. Evol. Psychol. 2021, 19, 4. [Google Scholar] [CrossRef]
- Floris, D.L.; Wolfers, T.; Zabihi, M.; E Holz, N.; Zwiers, M.P.; Charman, T.; Tillmann, J.; Ecker, C.; Dell’Acqua, F.; Banaschewski, T.; et al. Atypical brain asymmetry in autism—A candidate for clinically meaningful stratification. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 802–812. [Google Scholar] [CrossRef]
- Postema, M.C.; Rooij, D.V.; Anagnostou, E.; Arango, C.; Auzias, G.; Behrmann, M.; Busatto Filho, G.; Calderoni, S.; Calvo, R.; Daly, E.; et al. Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat. Commun. 2019, 10, 4958. [Google Scholar] [CrossRef] [Green Version]
- Silver, E.; Korja, R.; Mainela-Arnold, E.; Pulli, E.P.; Saukko, E.; Nolvi, S.; Kataja, E.L.; Karlsson, L.; Karlsson, H.; Tuulari, J.J. A systematic review of MRI studies of language development from birth to 2 years of age. Dev. Neurobiol. 2021, 81, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Sommer, I.; Ramsey, N.; Kahn, R.; Aleman, A.; Bouma, A. Handedness, language lateralisation and anatomical asymmetry in schizophrenia: Meta-analysis. Br. J. Psychiatry 2001, 178, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Markou, P.; Ahtam, B.; Papadatou-Pastou, M. Elevated Levels of Atypical Handedness in Autism: Meta-Analyses. Neuropsychol. Rev. 2017, 27, 258–283. [Google Scholar] [CrossRef] [PubMed]
- Lindell, A.K.; Hudry, K. Atypicalities in Cortical Structure, Handedness, and Functional Lateralization for Language in Autism Spectrum Disorders. Neuropsychol. Rev. 2013, 23, 257–270. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Beste, C.; Arning, L.; Peterburs, J.; Güntürkün, O. The ontogenesis of language lateralization and its relation to handedness. Neurosci. Biobehav. Rev. 2014, 43, 191–198. [Google Scholar] [CrossRef]
- Hackett, B.P. Formation and malformation of the vertebrate left-right axis. Curr. Mol. Med. 2002, 2, 39–66. [Google Scholar] [CrossRef]
- Duboc, V.; Lepage, T. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left–right axes in deuterostomes. J. Exp. Zool. Part B Mol. Dev. Evol. 2008, 310, 41–53. [Google Scholar] [CrossRef]
- Olson, M.V.; Varki, A. Sequencing the chimpanzee genome: Insights into human evolution and disease. Nat. Rev. Genet. 2003, 4, 20–28. [Google Scholar] [CrossRef]
- Pollard, K.S.; Salama, S.R.; King, B.; Kern, A.D.; Dreszer, T.; Katzman, S.; Siepel, A.; Pedersen, J.S.; Bejerano, G.; Baertsch, R.; et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet. 2006, 2, e168. [Google Scholar] [CrossRef] [Green Version]
- Levchenko, A.; Kanapin, A.; Samsonova, A.; Gainetdinov, R. Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development. Genome Biol. Evol. 2018, 10, 166–188. [Google Scholar] [CrossRef] [Green Version]
- Doan, R.N.; Bae, B.-I.; Cubelos, B.; Chang, C.; Hossain, A.A.; Al-Saad, S.; Mukaddes, N.M.; Oner, O.; Al-Saffar, M.; Balkhy, S.; et al. Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior. Cell 2016, 167, 341–354.e12. [Google Scholar] [CrossRef] [PubMed]
- Polimanti, R.; Gelernter, J. Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder. PLoS Genet. 2017, 13, e1006618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron-Cohen, S.; Cox, A.; Baird, G.; Swettenham, J.; Nightingale, N.; Morgan, K.; Drew, A.; Charman, T. Psychological markers in the detection of autism in infancy in a large population. Early Hum. Dev. 1997, 47, 98–99. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Burtenshaw, A.; Hobson, E. Mathematical Talent is Linked to Autism. Hum. Nat. 2007, 18, 125–131. [Google Scholar] [CrossRef]
- Vlok, M.; Buckley, H.R.; Miszkiewicz, J.J.; Walker, M.M.; Domett, K.; Willis, A.; Trinh, H.H.; Minh, T.T.; Nguyen, M.H.T.; Nguyen, L.C.; et al. Forager and farmer evolutionary adaptations to malaria evidenced by 7000 years of thalassemia in Southeast Asia. Sci. Rep. 2021, 11, 5677. [Google Scholar] [CrossRef]
- Davis, R.W. Metabolism and thermoregulation. In Marine Mammals; Springer: Cham, Switzerland, 2019; pp. 57–87. [Google Scholar]
- Konadhode, R.R.; Pelluru, D.; Shiromani, P.J. Unihemispheric sleep: An enigma for current models of sleep-wake regulation. Sleep 2016, 39, 491–494. [Google Scholar] [CrossRef] [Green Version]
- Rattenborg, N.C.; Voirin, B.; Cruz, S.M.; Tisdale, R.; Dell’Omo, G.; Lipp, H.P.; Wikelski, M.; Vyssotski, A.L. Evidence that birds sleep in mid-flight. Nat. Commun. 2016, 7, 12468. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, R.; Ayabe-Kanamura, S.; Izawa, J. The role of motor memory dynamics in structuring bodily self-consciousness. iScience 2021, 24, 103511. [Google Scholar] [CrossRef]
- Ropar, D.; Greenfield, K.; Smith, A.D.; Carey, M.; Newport, R. Body representation difficulties in children and adolescents with autism may be due to delayed development of visuo-tactile temporal binding. Dev. Cogn. Neurosci. 2018, 29, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Bódizs, R.; Gombos, F.; Ujma, P.P.; Szakadát, S.; Sándor, P.; Simor, P.; Pótári, A.; Konrad, B.N.; Genzel, L.; Steiger, A.; et al. The hemispheric lateralization of sleep spindles in humans. Sleep Spindl. Cortical Up States 2017, 1, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Andrillon, T.; Poulsen, A.T.; Hansen, L.K.; Léger, D.; Kouider, S. Neural Markers of Responsiveness to the Environment in Human Sleep. J. Neurosci. 2016, 36, 6583–6596. [Google Scholar] [CrossRef] [PubMed]
- Gazzaniga, M.S.; Miller, M.B. The left hemisphere. In The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology; Academic Press: Cambridge, MA, USA, 2009; pp. 261–270. [Google Scholar]
- Caccappolo, E.; Honig, L.S. Development of the central nervous system. In Textbook of Clinical Neuropsychology; Taylor & Francis: Abingdon, UK, 2016; p. 83. [Google Scholar]
- Olulade, O.A.; Seydell-Greenwald, A.; Chambers, C.E.; Turkeltaub, P.E.; Dromerick, A.W.; Berl, M.M.; Gaillard, W.D.; Newport, E.L. The neural basis of language development: Changes in lateralization over age. Proc. Natl. Acad. Sci. USA 2020, 117, 23477–23483. [Google Scholar] [CrossRef] [PubMed]
- Schacter, D.L. Understanding Implicit Memory: A Cognitive Neuroscience Approach. In Theories of Memory; Psychology Press: London, UK, 2019; pp. 387–412. [Google Scholar] [CrossRef]
- Newcombe, N.; Benear, S.L.; Ngo, C.; Olson, I.R. Memory in infancy and childhood. In Oxford Handbook on Human Memory; Oxford University Press: Oxford, UK, 2022; in press. [Google Scholar]
- Sheridan, C. A Longitudinal Spatiotemporal Analysis of Gait after Traumatic Brain Injury and an Assessment of Rhythmic Auditory Stimulation as a Gait Training Technique. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2018. [Google Scholar]
- De Sanctis, P.; Solis-Escalante, T.; Seeber, M.; Wagner, J.; Ferris, D.P.; Gramann, K. Time to move: Brain dynamics underlying natural action and cognition. Eur. J. Neurosci. 2021, 54, 8075–8080. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Ishii, K.; Ishiwata, K.; Oda, K.; Suzukawa, M.; Makizako, H.; Doi, T.; Suzuki, T. Gait adaptability and brain activity during unaccustomed treadmill walking in healthy elderly females. Gait Posture 2013, 38, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Ivry, R.B.; Spencer, R.M.; Zelaznik, H.N.; Diedrichsen, J. The cerebellum and event timing. Ann. N. Y. Acad. Sci. 2002, 978, 302–317. [Google Scholar] [CrossRef]
- Swinnen, S.P.; Young, D.E.; Walter, C.B.; Serrien, D.J. Control of asymmetrical bimanual movements. Exp. Brain Res. 1991, 85, 163–173. [Google Scholar] [CrossRef]
- Bruchhage, M.M.; Bucci, M.-P.; Becker, E.B. Cerebellar involvement in autism and ADHD. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 155, pp. 61–72. [Google Scholar] [CrossRef]
- Brown-Lum, M.; Zwicker, J.G. Brain Imaging Increases Our Understanding of Developmental Coordination Disorder: A Review of Literature and Future Directions. Curr. Dev. Disord. Rep. 2015, 2, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Mackie, M.-A.; Fan, J. Reduced Efficiency and Capacity of Cognitive Control in Autism Spectrum Disorder. Autism Res. 2016, 9, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.N.; Ramphal, B.; Koe, E.; Raudales, A.; Goldsmith, J.; Margolis, A.E. Cognitive correlates of autism spectrum disorder symptoms. Autism Res. 2021, 14, 2405–2411. [Google Scholar] [CrossRef]
- Ribary, U.; Doesburg, S.M.; Ward, L.M. Unified principles of thalamo-cortical processing: The neural switch. Biomed. Eng. Lett. 2017, 7, 229–235. [Google Scholar] [CrossRef]
- Zhou, H.-Y.; Cai, X.-L.; Weigl, M.; Bang, P.; Cheung, E.F.; Chan, R.C. Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2018, 86, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Lorsung, E.; Karthikeyan, R.; Cao, R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front. Neurosci. 2021, 15, 642745. [Google Scholar] [CrossRef] [PubMed]
- Black, J.E.; Jones, T.A.; Nelson, C.A.; Greenough, W.T. Neuronal plasticity and the developing brain. In Handbook of Child and Adolescent Psychiatry; Wiley: Hoboken, NJ, USA, 1998; Volume 6, pp. 31–53. [Google Scholar]
- Rakic, P. Specification of cerebral cortical areas. Science 1988, 241, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Mualem, R.; Mughrabi, S.K. The neurological development of the child with the educational enrichment in mind. Psicol. Educ. 2015, 21, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Huttenlocher, P.R. Synaptogenesis in human cerebral cortex. In Human Behavior and the Developing Brain; Dawson, G., Fischer, K.W., Eds.; The Guilford Press: New York, NY, USA, 1994; pp. 137–152. [Google Scholar]
- Courchesne, E.; Chisum, H.; Townsend, J. Neural activity-dependent brain changes in development: Implications for psychopathology. Dev. Psychopathol. 1994, 6, 697–722. [Google Scholar] [CrossRef]
- Edelman, G.M. Neural Darwinism: The Theory of Neuronal Group Selection; Basic Books: New York, NY, USA, 1987. [Google Scholar]
- Greenough, W.T. Experience effects on the developing and the mature brain: Dendritic branching and synaptogenesis. In Perinatal Development: A Psychobiological Perspective; Academic Press: Cambridge, MA, USA, 1987; pp. 195–221. [Google Scholar]
- Cicchetti, D. The impact of social experience on neurobiological systems: Illustration from a constructivist view of child maltreatment. Cogn. Dev. 2002, 17, 1407–1428. [Google Scholar] [CrossRef]
- Birch, H.; Belmont, I.; Karp, E. The Prolongation of Inhibition in Brain-Damaged Patients. Cortex 1965, 1, 397–409. [Google Scholar] [CrossRef]
- Belmont, I.; Handler, A.; Karp, E. Delayed sensory motor processing following cerebral damage. II. A multisensory defect. J. Nerv. Ment. Dis. 1972, 115, 345–349. [Google Scholar] [CrossRef]
- Karp, E.; Belmont, I.; Birch, H.G. Delayed Sensory-Motor Processing Following Cerebral Damage. Cortex 1971, 7, 419–425. [Google Scholar] [CrossRef]
- Rutter, M.; Birch, H.G.; Thomas, A.; Chess, S. Temperamental Characteristics in Infancy and the Later Development of Behavioural Disorders. Br. J. Psychiatry 1964, 110, 651–661. [Google Scholar] [CrossRef]
- Birch, H.G.; Lefford, A. Visual Differentiation, Ntersensory Integration, and Voluntary Motor Control. Monogr. Soc. Res. Child Dev. 1967, 32, 1–87. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.E.; Marshall, J.C.; Friston, K.J.; Rowe, J.B.; Ritzl, A.; Zilles, K.; Fink, G.R. Lateralized Cognitive Processes and Lateralized Task Control in the Human Brain. Science 2003, 301, 384–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doron, K.W.; Gazzaniga, M.S. Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication. Cortex 2008, 44, 1023–1029. [Google Scholar] [CrossRef]
- Innocenti, G.M. Exuberant development of connections, and its possible permissive role in cortical evolution. Trends Neurosci. 1995, 18, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, R.; Ghaziri, H.; Galuske, R.; Hof, P.R.; Innocenti, G.M. Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proc. Natl. Acad. Sci. USA 2009, 106, 19551–19556. [Google Scholar] [CrossRef] [Green Version]
- Phillips, K.A.; Stimpson, C.D.; Smaers, J.B.; Raghanti, M.A.; Jacobs, B.; Popratiloff, A.; Hof, P.R.; Sherwood, C.C. The corpus callosum in primates: Processing speed of axons and the evolution of hemispheric asymmetry. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151535. [Google Scholar] [CrossRef] [Green Version]
- Wegiel, J.; Kaczmarski, W.; Flory, M.; Martinez-Cerdeno, V.; Wisniewski, T.; Nowicki, K.; Kuchna, I.; Wegiel, J. Deficit of corpus callosum axons, reduced axon diameter and decreased area are markers of abnormal development of interhemispheric connections in autistic subjects. Acta Neuropathol. Commun. 2018, 6, 143. [Google Scholar] [CrossRef]
- Yeh, C.; Chen, M.-H.; Chen, P.-H.; Lee, C.-L. Lateralization as a symphony: Joint influence of interhemispheric inhibition and transmission on brain asymmetry and syntactic processing. Brain Lang. 2022, 228, 105095. [Google Scholar] [CrossRef]
- Ringo, J.L.; Doty, R.W.; Demeter, S.; Simard, P.Y. Time Is of the Essence: A Conjecture that Hemispheric Specialization Arises from Interhemispheric Conduction Delay. Cereb. Cortex 1994, 4, 331–343. [Google Scholar] [CrossRef]
- Petkoski, S.; Jirsa, V.K. Transmission time delays organize the brain network synchronization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180132. [Google Scholar] [CrossRef]
- Marchant, L.F.; McGrew, W.C. Laterality of limb function in wild chimpanzees of Gombe National Park: Comprehensive study of spontaneous activities. J. Hum. Evol. 1996, 30, 427–443. [Google Scholar] [CrossRef]
- Magat, M.; Brown, C. Laterality enhances cognition in Australian parrots. Proc. R. Soc. B Biol. Sci. 2009, 276, 4155–4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labache, L.; Mazoyer, B.; Joliot, M.; Crivello, F.; Hesling, I.; Tzourio-Mazoyer, N. Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries. eLife 2020, 9, 58722. [Google Scholar] [CrossRef] [PubMed]
- Iacoboni, M.; Ptito, A.; Weekes, N.Y.; Zaidel, E. Parallel visuomotor processing in the split brain: Cortico-subcortical interactions. Brain 2000, 123, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Mooshagian, E.; Iacoboni, M.; Zaidel, E. Spatial attention and interhemispheric visuomotor integration in the absence of the corpus callosum. Neuropsychologia 2009, 47, 933–937. [Google Scholar] [CrossRef]
- Keary, C.J.; Minshew, N.J.; Bansal, R.; Goradia, D.; Fedorov, S.; Keshavan, M.S.; Hardan, A.Y. Corpus Callosum Volume and Neurocognition in Autism. J. Autism Dev. Disord. 2009, 39, 834–841. [Google Scholar] [CrossRef] [Green Version]
- Just, M.A.; Cherkassky, V.L.; Keller, T.A.; Minshew, N.J. Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of under-connectivity. Brain 2004, 127, 1811–1821. [Google Scholar] [CrossRef] [Green Version]
- Badaruddin, D.H.; Andrews, G.L.; Bölte, S.; Schilmoeller, K.J.; Schilmoeller, G.; Paul, L.; Brown, W.S. Social and Behavioral Problems of Children with Agenesis of the Corpus Callosum. Child Psychiatry Hum. Dev. 2007, 38, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Paul, L.K.; Brown, W.S.; Adolphs, R.; Tyszka, J.M.; Richards, L.J.; Mukherjee, P.; Sherr, E.H. Agenesis of the corpus callosum: Genetic, developmental and functional aspects of connectivity. Nat. Rev. Neurosci. 2007, 8, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, M.K.; Cook, E.H., Jr.; Anderson, G.M.; Rubenstein, J.L.R.; Greenough, W.T.; Beckel-Mitchener, A.; Courchesne, E.; Boulanger, L.M.; Powell, S.B.; Levitt, P.R.; et al. Autism as a disorder of neural information processing: Directions for research and targets for therapy. Mol. Psychiatry 2004, 9, 646–663. [Google Scholar] [CrossRef] [Green Version]
- Courchesne, E.; Pierce, K. Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. Int. J. Dev. Neurosci. 2005, 23, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.A. Wisconsin card sort. J. Gen. Psychol. 1948, 39, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Borys, S.V.; Spitz, H.H.; Dorans, B.A. Tower of Hanoi performance of retarded young adults and nonretarded children as a function of solution length and goal state. J. Exp. Child Psychol. 1982, 33, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Ozonoff, S.; Cook, I.; Coon, H.; Dawson, G.; Joseph, R.; Klin, A.; McMahon, W.M.; Minshew, N.; Munson, J.A.; Pennington, B.F.; et al. Performance on Cambridge Neuropsychological Test Automated Battery Subtests Sensitive to Frontal Lobe Function in People with Autistic Disorder: Evidence from the Collaborative Programs of Excellence in Autism Network. J. Autism Dev. Disord. 2004, 34, 139–150. [Google Scholar] [CrossRef]
- Rinehart, N.J.; Bradshaw, J.L.; Moss, S.A.; Brereton, A.V.; Tonge, B.J. A deficit in shifting attention present in high-functioning autism but not Asperger’s disorder. Autism 2001, 5, 67–80. [Google Scholar] [CrossRef]
- Luders, E.; Narr, K.; Zaidel, E.; Thompson, P.; Jancke, L.; Toga, A. Parasagittal Asymmetries of the Corpus Callosum. Cereb. Cortex 2005, 16, 346–354. [Google Scholar] [CrossRef]
- Braun, C.M.; Achim, A.; Larocque, C. The evolution of the concept of interhemispheric relay time. In The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum; Zaidel, E., Iacoboni, M., Eds.; MIT Press: Cambridge, MA, USA, 2003; pp. 237–258. [Google Scholar]
- Saron, C.D.; Foxe, J.J.; Simpson, G.V.; Vaughan, H.G. Interhemispheric visuomotor activation: Spatiotemporal electrophysiology related to reaction time. In The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum; Zaidel, E., Iacoboni, M., Eds.; MIT Press: Cambridge, MA, USA, 2003; pp. 171–219. [Google Scholar]
- Hofer, S.; Frahm, J. Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 2006, 32, 989–994. [Google Scholar] [CrossRef]
- Andersen, R.A.; Buneo, C.A. Intentional Maps in Posterior Parietal Cortex. Annu. Rev. Neurosci. 2002, 25, 189–220. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.-U.; Röricht, S.; Woiciechowsky, C. Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann. Neurol. 1998, 43, 360–369. [Google Scholar] [CrossRef]
- Bentin, S.; Sahar, A.; Moscovitch, M. Intermanual information transfer in patients with lesions in the trunk of the corpus callosum. Neuropsychologia 1984, 22, 601–611. [Google Scholar] [CrossRef]
- Goodale, M.A.; Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci. 1992, 15, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Ghaziuddin, M.; Butler, E. Clumsiness in autism and Asperger syndrome: A further report. J. Intellect. Disabil. Res. 1998, 42, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Dawson, G.; Watling, R. Interventions to facilitate auditory, visual, and motor integration in autism: A review of the evidence. J. Autism Dev. Disord. 2000, 30, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, S.I.; Wieder, S. Developmental patterns and outcomes in infants and children with disorders in relating and communicating: A chart review of 200 cases of children with autistic spectrum diagnoses. J. Dev. Learn. Disord. 1997, 1, 87–142. [Google Scholar]
- Preis, J. The Effect of Picture Communication Symbols on the Verbal Comprehension of Commands by Young Children with Autism. Focus Autism Other Dev. Disabil. 2006, 21, 194–208. [Google Scholar] [CrossRef]
- Schultz, R.T. Developmental deficits in social perception in autism: The role of the amygdala and fusiform face area. Int. J. Dev. Neurosci. 2005, 23, 125–141. [Google Scholar] [CrossRef]
- Rinehart, N.J.; Bradshaw, J.L.; Brereton, A.V.; Tonge, B. Movement Preparation in High-Functioning Autism and Asperger Disorder: A Serial Choice Reaction Time Task Involving Motor Reprogramming. J. Autism Dev. Disord. 2001, 31, 79–88. [Google Scholar] [CrossRef]
- Baranek, G.T.; David, F.J.; Poe, M.D.; Stone, W.L.; Watson, L.R. Sensory Experiences Questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. J. Child Psychol. Psychiatry 2005, 47, 591–601. [Google Scholar] [CrossRef]
- Ozonoff, S.; Miller, J.N. An Exploration of Right-Hemisphere Contributions to the Pragmatic Impairments of Autism. Brain Lang. 1996, 52, 411–434. [Google Scholar] [CrossRef]
- Floris, D.L.; Chura, L.R.; Holt, R.J.; Suckling, J.; Bullmore, E.T.; Baron-Cohen, S.; Spencer, M.D. Psychological Correlates of Handedness and Corpus Callosum Asymmetry in Autism: The left Hemisphere Dysfunction Theory Revisited. J. Autism Dev. Disord. 2012, 43, 1758–1772. [Google Scholar] [CrossRef]
- Sabbagh, M.A. Communicative Intentions and Language: Evidence from Right-Hemisphere Damage and Autism. Brain Lang. 1999, 70, 29–69. [Google Scholar] [CrossRef] [PubMed]
- Rutter, M. The development of infantile autism. Psychol. Med. 1974, 4, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.; Turkewitz, G. A sensory basis for the lateral difference in the newborn infant’s response to somesthetic stimulation. J. Exp. Child Psychol. 1974, 18, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Delong, G.R.; Rosman, N.P. Pneumographic findings in the infantile autism syndrome. A correlation with temporal lobe disease. Brain 1975, 98, 667–688. [Google Scholar] [CrossRef]
- Colby, K.M.; Parkison, C. Handedness in autistic children. J. Autism Child. Schizophr. 1977, 7, 3–9. [Google Scholar] [CrossRef]
- Reis, C.V.C.; Yagmurlu, K.; Elhadi, A.M.; Dru, A.; Lei, T.; Gusmão, S.N.S.; Tazinaffo, U.; Zabramski, J.M.; Spetzler, R.F.; Preul, M.C. The Anterolateral Limit of the Occipital Lobe: An Anatomical and Imaging Study. J. Neurol. Surg. Part B Skull Base 2016, 77, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Hier, D.B.; LeMay, M.; Rosenberger, P.B. Autism and unfavorable left-right asymmetries of the brain. J. Autism Dev. Disord. 1979, 9, 153–159. [Google Scholar] [CrossRef]
- Knaus, T.A.; Tager-Flusberg, H.; Mock, J.; Dauterive, R.; Foundas, A.L. Prefrontal and Occipital Asymmetry and Volume in Boys with Autism Spectrum Disorder. Cogn. Behav. Neurol. 2012, 25, 186–194. [Google Scholar] [CrossRef]
- Tsai, L.; Jacoby, C.G.; Stewart, M.A.; Beisler, J.M. Unfavourable Left-Right Asymmetries of the Brain and Autism: A Question of Methodology. Br. J. Psychiatry 1982, 140, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Guadalupe, T.; Willems, R.M.; Zwiers, M.P.; Vasquez, A.A.; Hoogman, M.; Hagoort, P.; Fernandez, G.; Buitelaar, J.; Franke, B.; Fisher, S.; et al. Differences in cerebral cortical anatomy of left- and right-handers. Front. Psychol. 2014, 5, 261. [Google Scholar] [CrossRef]
- De Fossé, L.; Hodge, S.M.; Makris, N.; Kennedy, D.N.; Caviness, V.S., Jr.; McGrath, L.; Steele, S.; Ziegler, D.A.; Herbert, M.R.; Frazier, J.A.; et al. Language-association cortex asymmetry in autism and specific language impairment. Ann. Neurol. 2004, 56, 757–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Zhong, S.; Nie, S.; Gong, G. Aberrant development of the asymmetry between hemispheric brain white matter networks in autism spectrum disorder. Eur. Neuropsychopharmacol. 2018, 28, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Hardan, A.Y.; Pabalan, M.; Gupta, N.; Bansal, R.; Melhem, N.M.; Fedorov, S.; Keshavan, M.S.; Minshew, N.J. Corpus callosum volume in children with autism. Psychiatry Res. Neuroimaging 2009, 174, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartha-Doering, L.; Kollndorfer, K.; Schwartz, E.; Fischmeister, F.P.; Alexopoulos, J.; Langs, G.; Prayer, D.; Kasprian, G.; Seidl, R. The role of the corpus callosum in language network connectivity in children. Dev. Sci. 2020, 24, 13031. [Google Scholar] [CrossRef]
- Valenti, M.; Pino, M.C.; Mazza, M.; Panzarino, G.; Di Paolantonio, C.; Verrotti, A. Abnormal Structural and Functional Connectivity of the Corpus Callosum in Autism Spectrum Disorders: A Review. Rev. J. Autism Dev. Disord. 2019, 7, 46–62. [Google Scholar] [CrossRef]
- Hinkley, L.B.; Marco, E.J.; Brown, E.; Bukshpun, P.; Gold, J.; Hill, S.; Findlay, A.M.; Jeremy, R.J.; Wakahiro, M.L.; Barkovich, A.J.; et al. The Contribution of the Corpus Callosum to Language Lateralization. J. Neurosci. 2016, 36, 4522–4533. [Google Scholar] [CrossRef] [Green Version]
- Cermak, C.A.; Arshinoff, S.; de Oliveira, L.R.; Tendera, A.; Beal, D.S.; Brian, J.; Anagnostou, E.; Sanjeevan, T. Brain and Language Associations in Autism Spectrum Disorder: A Scoping Review. J. Autism Dev. Disord. 2022, 52, 725–737. [Google Scholar] [CrossRef]
- Preslar, J.; Kushner, H.I.; Marino, L.; Pearce, B. Autism, lateralisation, and handedness: A review of the literature and meta-analysis. Laterality Asymmetries Body Brain Cogn. 2014, 19, 64–95. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Choi, U.-S.; Park, S.-Y.; Oh, S.-H.; Yoon, H.-W.; Koh, Y.-J.; Im, W.-Y.; Park, J.-I.; Song, D.-H.; Cheon, K.-A.; et al. Abnormal Activation of the Social Brain Network in Children with Autism Spectrum Disorder: An fMRI Study. Psychiatry Investig. 2015, 12, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Baldessarini, R.J.; Tondo, L. Suicide risk and treatments for patients with bipolar disorder. JAMA 2003, 290, 1517–1519. [Google Scholar] [CrossRef]
- Baron-Cohen, S. Does Autism Occur More Often in Families of Physicists, Engineers, and Mathematicians? Autism 1998, 2, 296–301. [Google Scholar] [CrossRef]
- McGilchrist, I. The Master and His Emissary: The Divided Brain and the Making of the Western World; Yale University Press: London, UK, 2019. [Google Scholar]
- Brandler, W.M.; Morris, A.P.; Evans, D.M.; Scerri, T.S.; Kemp, J.P.; Timpson, N.J.; Pourcain, B.S.; Smith, G.D.; Ring, S.M.; Stein, J.; et al. Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill. PLOS Genet. 2013, 9, e1003751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandler, W.M.; Paracchini, S. The genetic relationship between handedness and neurodevelopmental disorders. Trends Mol. Med. 2014, 20, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markham, J.A.; Greenough, W.T. Experience-driven brain plasticity: Beyond the synapse. Neuron Glia Biol. 2004, 1, 351–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullén, F. Is activity regulation of late myelination a plastic mechanism in the human nervous system? Neuron Glia Biol. 2009, 5, 29–34. [Google Scholar] [CrossRef]
- Juraska, J.M.; Kopcik, J.R. Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Res. 1988, 450, 1–8. [Google Scholar] [CrossRef]
- Sánchez, M.; Hearn, E.F.; Do, D.; Rilling, J.K.; Herndon, J.G. Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys. Brain Res. 1998, 812, 38–49. [Google Scholar] [CrossRef]
- Bengtsson, S.; Nagy, Z.; Skare, S.; Forsman, L.; Forssberg, H.; Ullén, F. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 2005, 8, 1148–1150. [Google Scholar] [CrossRef]
- Markham, J.A.; Herting, M.M.; Luszpak, A.E.; Juraska, J.M.; Greenough, W.T. Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood. Brain Res. 2009, 1288, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.J.; Wilczynski, W. Social experience organizes parallel networks in sensory and limbic forebrain. Dev. Neurobiol. 2007, 67, 285–303. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leisman, G.; Melillo, R.; Melillo, T.; Machado, C.; Machado-Ferrer, Y.; Chinchilla, M.; Carmeli, E. Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry 2022, 14, 2689. https://doi.org/10.3390/sym14122689
Leisman G, Melillo R, Melillo T, Machado C, Machado-Ferrer Y, Chinchilla M, Carmeli E. Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry. 2022; 14(12):2689. https://doi.org/10.3390/sym14122689
Chicago/Turabian StyleLeisman, Gerry, Robert Melillo, Ty Melillo, Calixto Machado, Yanin Machado-Ferrer, Mauricio Chinchilla, and Eli Carmeli. 2022. "Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder" Symmetry 14, no. 12: 2689. https://doi.org/10.3390/sym14122689
APA StyleLeisman, G., Melillo, R., Melillo, T., Machado, C., Machado-Ferrer, Y., Chinchilla, M., & Carmeli, E. (2022). Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry, 14(12), 2689. https://doi.org/10.3390/sym14122689