On Generalization of Different Integral Inequalities for Harmonically Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. New Parameterized Inequalities for Harmonically Convex Function
4. Some Special Cases of Main Results
5. Application to Special Means
- The arithmetic mean;
- The geometric mean;
- The harmonic mean;
- The logarithmic mean;
- The generalize logarithmic mean;
- The identric mean.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Iqbal, M.; Qaisar, S.; Muddassar, M. A short note on integral inequality of type Hermite-Hadamard through convexity. J. Comput. Analaysis Appl. 2016, 21, 946–953. [Google Scholar]
- İşcan, İ. Hermite-Hadamard type inequaities for harmonically functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar]
- İşcan, İ.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Şanli, Z. Some midpoint type inequalities for Riemann–Liouville fractional integrals. Appl. Appl. Math. 2019, 2019, 58–73. [Google Scholar]
- Butt, S.I.; Yousaf, S.; Asghar, A.; Khan, K.A.; Moradi, H.R. New Fractional Hermite-Hadamard-Mercer Inequalities for Harmonically Convex Function. J. Funct. Spaces 2021, 2021, 5868326. [Google Scholar] [CrossRef]
- Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofal, T.A. Hermite-Hadamard Type Inequalities via Generalized Harmonic Exponential Convexity and Applications. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Khan, M.A.; Ahmadian, A.; Ahmed, M.N.; Mahmood, A.K. Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Math. 2021, 6, 1889–1904. [Google Scholar] [CrossRef]
- Viloria, J.M.; Vivas-Cortez, M.J. Hermite-Hadamard type inequalities for harmonically convex functions on n-coordinates. Appl. Math. Inf. Sci. Lett. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Sun, W. Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities. J. Nonlinear Sci. Appl. 2017, 10, 5869–5880. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Xu, R. Hermite-Hadamard type inequalities for harmonical (h1,h2)-convex interval-valued functions. AIMS Math. 2021, 4, 89–103. [Google Scholar] [CrossRef]
- Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, Y.M. New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Baloch, I.A.; Chu, Y.M. Petrović-type inequalities for harmonic h-convex functions. J. Funct. Space 2020, 2020, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Baloch, I.A.; Mughal, A.A.; Chu, Y.-M.; Haq, A.U.; Sen, M.D.L. A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Math. 2020, 5, 6404–6418. [Google Scholar] [CrossRef]
- Chen, F. Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Jensen type for HA-convex functions. An. Univ. Oradea Fasc. Mat. 2020, 27, 103–124. [Google Scholar]
- Kunt, M.; İşscan, İ.; Yazici, N. Hermite-Hadamard type inequalities for product of harmonically convex functions via Riemann–Liouville fractional integrals. J. Math. Anal. 2016, 7, 74–82. [Google Scholar]
- Set, E.; İşcan, İ.; Zehir, F. On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals. Konuralp J. Math. 2015, 3, 42–55. [Google Scholar]
- Sitthiwirattham, T.; Budak, H.; Kara, H.; Ali, M.A.; Reunsumrit, J. On Some New Fractional Ostrowski- and Trapezoid-Type Inequalities for Functions of Bounded Variations with Two Variables. Symmetry 2021, 13, 1724. [Google Scholar] [CrossRef]
- You, X.X.; Ali, M.A.; Budak, H.; Agarwal, P.; Chu, Y.M. Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals. J. Inequal. Appl. 2021, 2021, 1–22. [Google Scholar] [CrossRef]
- You, X.X.; Ali, M.A.; Budak, H.; Reunsumrit, J.; Sitthiwirattham, T. Hermite-Hadamard-Mercer-Type Inequalities for Harmonically Convex Mappings. Mathematics 2021, 9, 2556. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Kashuri, A.; Budak, H. Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions. Adv. Differ. Equ. 2020, 2020, 1–37. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reunsumrit, J.; Vivas-Cortez, M.J.; Ali, M.A.; Sitthiwirattham, T. On Generalization of Different Integral Inequalities for Harmonically Convex Functions. Symmetry 2022, 14, 302. https://doi.org/10.3390/sym14020302
Reunsumrit J, Vivas-Cortez MJ, Ali MA, Sitthiwirattham T. On Generalization of Different Integral Inequalities for Harmonically Convex Functions. Symmetry. 2022; 14(2):302. https://doi.org/10.3390/sym14020302
Chicago/Turabian StyleReunsumrit, Jiraporn, Miguel J. Vivas-Cortez, Muhammad Aamir Ali, and Thanin Sitthiwirattham. 2022. "On Generalization of Different Integral Inequalities for Harmonically Convex Functions" Symmetry 14, no. 2: 302. https://doi.org/10.3390/sym14020302
APA StyleReunsumrit, J., Vivas-Cortez, M. J., Ali, M. A., & Sitthiwirattham, T. (2022). On Generalization of Different Integral Inequalities for Harmonically Convex Functions. Symmetry, 14(2), 302. https://doi.org/10.3390/sym14020302