Compressive Strength Characteristics of Long Tubular Bones after Hyperthermal Ablation
Abstract
:1. Introduction
2. Research Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- National Library of Medicine-National Institutes of Health. Available online: https://www.nlm.nih.gov/ (accessed on 29 November 2021).
- Lodi, M.B.; Curreli, N.; Zappia, S.; Pilia, L.; Casula, M.F.; Fiorito, S.; Catapano, I.; Desogus, F.; Pellegrino, T.; Kriegel, I.; et al. Influence of magnetic scaffold loading patterns on their hyperthermic potential against bone tumors. IEEE Trans. Biomed. Eng. 2021, 1. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, P.; Lv, L.; Zhou, Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020, 10, 11837–11861. [Google Scholar] [CrossRef] [PubMed]
- Lodi, M.B.; Fanti, A.; Muntoni, G.; Mazzarella, G. A multiphysic model for the hyperthermia treatment of residual osteosarcoma cells in upper limbs using magnetic scaffolds. IEEE J. Multiscale Multiphysics Comput. Tech. 2019, 4, 337–347. [Google Scholar] [CrossRef]
- Casali, P.G.; Bielack, S.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brennan, B.; et al. Bone sarcomas: ESMO–PaedCan–EURACAN clinical practice guidelines for diagnosis, treatment and follow-up †. Ann. Oncol. 2018, 29, iv79–iv95. [Google Scholar] [CrossRef]
- Gaston, C.L.; Goulding, K.; Grimer, R. The use of endoprostheses in musculoskeletal oncology. Oper. Tech. Orthop. 2014, 24, 91–102. [Google Scholar] [CrossRef]
- Litvinov, Y.Y.; Matveichuk, I.V.; Rozanov, V.V.; Krasnov, V.V. Optimization of technologies for manufacture of demineralized bone implants for drug release. Biomed. Eng. 2021, 54, 393–396. [Google Scholar] [CrossRef]
- Sablina, T.Y.; Sevostyanova, I.N.; Gorbatenko, V.V.; Ryzhova, L.N.; Molchunova, L.M.; Kulkov, S.N. Investigation of the strain inhomogeneity of ZrO2-(Y2O3) during brazilian test. AIP Conf. Proc. 2019, 2167, 020302. [Google Scholar] [CrossRef]
- Sevostyanova, I.N.; Sablina, T.Y.; Gorbatenko, V.V.; Kulkov, S.N. Strain localization during diametral compression of ZrO2(Y2O3) ceramics. Tech. Phys. Lett. 2019, 45, 943–946. [Google Scholar] [CrossRef]
- Khattak, M.J.; Umer, M. Autoclaved tumor bone for reconstruction: An alternative in developing countries. Clin. Orthop. Relat. Res. 2006, 447, 138–144. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jeon, D.-G.; Cho, W.H.; Song, W.S.; Kim, B.S. Are pasteurized autografts durable for reconstructions after bone tumor resections? Clin. Orthop. Relat. Res. 2018, 476, 1728–1737. [Google Scholar] [CrossRef]
- Pakhmurin, D.O.; Fedorov, A.A.; Kobzev, A.V.; Semenov, V.D.; Anasenya, I.I.; Bogoutdinova, A.V.; Sitnikov, P.K.; Kazhmaganbetova, M.; Matyushkov, S.; Khan, K.I.; et al. Method for Intraoperative Hyperthermic Action on Bone Tissue. RU Patent 2695305, 13 July 2018. [Google Scholar]
- Pakhmurin, D.O.; Semenov, V.D.; Kobzev, A.V.; Litvinov, A.V.; Uchaev, V.N.; Khutornoy, A.Y. Analysis of a temperature distribution in a heating area when using a complex for local hyperthermia. In Proceedings of the 2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Erlagol, Russia, 29 June–3 July 2015; pp. 591–594. [Google Scholar]
- Pakhmurin, D.O.; Kobzev, A.V.; Semenov, V.D.; Litvinov, A.V.; Uchaev, V.N.; Khutornoy, A.Y. A method of controlled local hyperthermia. World Appl. Sci. J. 2014, 30, 1182–1187, ISSN 1818-4952. Available online: http://idosi.org/wasj/wasj30(9)14/19.pdf (accessed on 25 January 2022).
- Pakhmurin, D.O.; Kobzev, A.V.; Semenov, V.D.; Litvinov, A.V.; Uchaev, V.N.; Khutornoy, A.Y. A Temperature stabilization device for local hyperthermia in cancer treatment. Middle-East J. Sci. Res. 2014, 20, 1940–1945, ISSN 1990-9233. Available online: http://www.idosi.org/mejsr/mejsr20(12)14.htm (accessed on 25 January 2022).
- Kobzev, A.V.; Pakhmurin, D.O.; Semenov, V.D.; Semenova, G.D. Complex for High-Temperature Effects on Biological Tissue (Options). RU Patent 2636877, 21 November 2016. [Google Scholar]
- Singh, V.A.; Nagalingam, J.; Saad, M.; Pailoor, J. Which is the best method of sterilization of tumour bone for reimplantation? A biomechanical and histopathological study. BioMedical Eng. OnLine 2010, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Knaepler, H.; Von Garrel, T.; Seipp, H.M.; Ascherl, R. Experimental studies of thermal disinfection and sterilization of allogeneic bone transplants and their effects on biological viability. Unfallchirurg 1992, 95, 477–484. [Google Scholar]
- Yasin, N.F.; Singh, V.A.; Saad, M.; Omar, E. Which is the best method of sterilization for recycled bone autograft in limb salvage surgery: A radiological, biomechanical and histopathological study in rabbit. BMC Cancer 2015, 15, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vangsness, C.T., Jr.; Mitchell, W., 3rd; Nimni, M.; Erlich, M.; Saadat, V.; Schmotzer, H. Collagen shortening. An experimental approach with heat. Clin. Orthop. Relat. Res. 1997, 337, 267–271. [Google Scholar] [CrossRef]
- Sedelnikova, M.B.; Komarova, E.G.; Sharkeev, Y.P.; Tolkacheva, T.V.; Khlusov, I.A.; Litvinova, L.S.; Yurova, K.A.; Shupletsova, V.V. Comparative investigations of structure and properties of micro-arc wollastonite-calcium phosphate coatings on titanium and zirconium-niobium alloy. Bioact. Mater. 2017, 2, 177–184. [Google Scholar] [CrossRef]
- Sinha, E.; Rout, S.K. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull. Mater. Sci. 2009, 32, 65–76. [Google Scholar] [CrossRef]
- Ratner, B.; Lemon, J.E.; Schoen, F.J. Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed.; Ratner, B.D., Ed.; Elsevier Academic Press: San Diego, CA, USA, 2004; p. 864. ISBN 978-0-12-582463-7. [Google Scholar]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114–139. [Google Scholar] [PubMed]
- Perilli, E.; Baleani, M.; Ohman, C.; Fognani, R.; Baruffaldi, F.; Viceconti, M. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J. Biomech. 2008, 41, 438–446. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Fuchs, R.K.; Thompson, W.R.; Warden, S.J. 2-Bone biology. In Bone Repair Biomaterials, 2nd ed.; Pawelec, K.M., Planell, J.A., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2019; pp. 15–52. ISBN 978-0-08-102451-5. [Google Scholar]
- Wall, A.; Board, T. The compressive behavior of bone as a two-phase porous structure. In Classic Papers in Orthopaedics; Banaszkiewicz, P., Kader, D., Eds.; Springer: London, UK, 2014. [Google Scholar] [CrossRef]
- Havaldar, R.; Pilli, S.C.; Putti, B.B. Insights into the effects of tensile and compressive loadings on human femur bone. Adv. Biomed. Res. 2014, 3, 101. [Google Scholar] [CrossRef]
- Ji, Z.; Ma, Y.; Li, W.; Li, X.; Zhao, G.; Yun, Z.; Qian, J.; Fan, Q. The healing process of intracorporeally and in situ devitalized distal femur by microwave in a dog model and its mechanical properties in vitro. PLoS ONE 2012, 7, e30505. [Google Scholar] [CrossRef] [Green Version]
- Liebergall, M.; Simkin, A.; Mendelson, S.; Rosenthal, A.; Amir, G.; Segal, D. Effect of moderate bone hyperthermia on cell viability and mechanical function. Clin. Orthop. Relat. Res. 1998, 349, 242–248. [Google Scholar] [CrossRef]
- Shin, S.; Yano, H.; Fukunaga, T.; Ikebe, S.; Shimizu, K.; Kaku, N.; Nagatomi, H.; Masumi, S. Biomechanical properties of heat-treated bone grafts. Arch. Orthop. Trauma. Surg. 2004, 125, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Köhler, P.; Kreicbergs, A.; Strömberg, L. Physical properties of autoclaved bone. Torsion test of rabbit diaphyseal bone. Acta Orthop. Scand. 1986, 57, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.R.; Silverman, B.F.; Buring, K.; Dubuc, F.L.; Rosenberg, J.M. The bone induction principle. Clin. Orthop. 1967, 53, 243–283. [Google Scholar] [CrossRef]
- Shimizu, K.; Masumi, S.; Yano, H.; Fukunaga, T.; Ikebe, S.; Shin, S. Revascularization and new bone formation in heat-treated bone grafts. Arch. Orthop. Trauma. Surg. 1999, 119, 57–61. [Google Scholar] [CrossRef]
- Su, K.; Tan, L.; Liu, X.; Cui, Z.; Zheng, Y.; Li, B.; Han, Y.; Li, Z.; Zhu, S.; Liang, Y.; et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano 2020, 14, 2077–2089, Epub 2020 Jan 31. [Google Scholar] [CrossRef] [PubMed]
- Irkutsk Supercomputer Center SB RAS. Available online: http://hpc.icc.ru/en/ (accessed on 16 January 2021).
Group | Parameter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Stress-to-Failure | Strain-to-Failure | Modulus of Elasticity | Elastic Deformation | Plastic Deformation | ||||||
Control | Heating | Control | Heating | Control | Heating | Control | Heating | Control | Control | |
100 ℃ | 0.46699 | 0.30977 | 0.03275 | 0.05194 | 0.81387 | 0.75861 | 0.48657 | 0.73026 | 0.10561 | 0.06735 |
90 ℃ | 0.66120 | 0.58837 | 0.19796 | 0.00402 | 0.86435 | 0.99101 | 0.19836 | 0.03139 | 0.00422 | 0.00486 |
80 ℃ | 0.23460 | 0.97968 | 0.66224 | 0.14339 | 0.40616 | 0.79511 | 0.05885 | 0.31993 | 0.07168 | 0.28658 |
70 ℃ | 0.17820 | 0.08900 | 0.00861 | 0.04942 | 0.02703 | 0.65011 | 0.17845 | 0.34244 | 0.00040 | 0.00000 |
60 ℃ | 0.67545 | 0.06407 | 0.03088 | 0.01368 | 0.94430 | 0.26179 | 0.31630 | 0.14852 | 0.00028 | 0.00005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakhmurin, D.; Pakhmurina, V.; Kashin, A.; Kulkov, A.; Khlusov, I.; Kostyuchenko, E.; Sidorov, I.; Anisenya, I. Compressive Strength Characteristics of Long Tubular Bones after Hyperthermal Ablation. Symmetry 2022, 14, 303. https://doi.org/10.3390/sym14020303
Pakhmurin D, Pakhmurina V, Kashin A, Kulkov A, Khlusov I, Kostyuchenko E, Sidorov I, Anisenya I. Compressive Strength Characteristics of Long Tubular Bones after Hyperthermal Ablation. Symmetry. 2022; 14(2):303. https://doi.org/10.3390/sym14020303
Chicago/Turabian StylePakhmurin, Denis, Viktoriya Pakhmurina, Alexander Kashin, Alexey Kulkov, Igor Khlusov, Evgeny Kostyuchenko, Ivan Sidorov, and Ilya Anisenya. 2022. "Compressive Strength Characteristics of Long Tubular Bones after Hyperthermal Ablation" Symmetry 14, no. 2: 303. https://doi.org/10.3390/sym14020303
APA StylePakhmurin, D., Pakhmurina, V., Kashin, A., Kulkov, A., Khlusov, I., Kostyuchenko, E., Sidorov, I., & Anisenya, I. (2022). Compressive Strength Characteristics of Long Tubular Bones after Hyperthermal Ablation. Symmetry, 14(2), 303. https://doi.org/10.3390/sym14020303