Generalized Nonlocal Symmetries of Two-Component Camassa–Holm and Hunter–Saxton Systems
Abstract
:1. Introduction
2. Nonlocal Symmetries of the Two-Component Camassa–Holm System
2.1. Pseudo-Spherical Surface
2.2. Nonlocal Symmetries for the Two-Component Camassa–Holm System
3. Recursion Operators for the Two-Component Camassa–Holm System
4. Nonlocal Symmetries of the Two-Component Hunter–Saxton System
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olver, P.J.; Rosenau, P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. 1996, 53, 1900. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, S.; Zhang, Y. A two-component generalization of the Camassa-Holm equation and its solutions. Lett. Math. Phys. 2006, 75, 1. [Google Scholar] [CrossRef] [Green Version]
- Camassa, R.; Holm, D.D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 1993, 71, 1661–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fokas, A.; Fuchssteiner, B. The hierarchy of the Benjamin-Ono equation. Physics D 1981, 4, 47. [Google Scholar] [CrossRef]
- Constantin, A.; Ivanov, R.I. On an integrable two-component Camassa-Holm shallow water system. Phys. Lett. A 2008, 372, 7129. [Google Scholar] [CrossRef] [Green Version]
- Guha, P.; Olver, P. Geodesic flow and two (super) component analog of the Camassa-Holm equation. SIGMA Symmetry Integr. Geom. Methods Appl. 2006, 2, 54. [Google Scholar] [CrossRef] [Green Version]
- Zuo, D. A two-component μ-Hunter-Saxton equation. Inverse Probl. 2010, 26, 085003. [Google Scholar] [CrossRef] [Green Version]
- Song, J.F.; Qu, C.Z. Geometric integrability of two-component Camassa-Holm and Hunter-Saxton systems. Commun. Theor. Phys. 2011, 55, 955. [Google Scholar]
- Yan, L.; Song, J.F.; Qu, C.Z. Nonlocal symmetries and geometric integrability of multi-component Camassa-Holm and Hunter-Saxton Systems. Chin. Phys. Lett. 2011, 28, 050204. [Google Scholar] [CrossRef]
- Lenells, J.; Misiolek, G.; Tiglay, F. Integrable evolution equations on spaces of tensor densities and their Peakon solutions. Commun. Math. Phys. 2010, 299, 129. [Google Scholar] [CrossRef] [Green Version]
- Reyes, E.G. Geometric integrability of the Camassa-Holm equation. Lett. Math. Phys. 2012, 59, 17. [Google Scholar] [CrossRef] [Green Version]
- Heredero, R.; Reyes, E. Nonlocal symmetries and a Darboux transformation for the Camassa-Holm equation. J. Phys. A Math. Theor. 2009, 42, 182002. [Google Scholar] [CrossRef]
- Reyes, E. Nonlocal symmetries and Kaup-Kupershmidt equation. J. Math. Phys. 2005, 46, 073507. [Google Scholar] [CrossRef]
- Heredero, R.; Reyes, E. Geometric integrability of the Camassa-Holm equation II. Int. Math. Res. Not. 2012, 2012, 3089–3125. [Google Scholar] [CrossRef]
- Chou, K.S.; Qu, C.Z. Integrable equations arising from the motion of plane curves. Physica D 2002, 162, 9–33. [Google Scholar] [CrossRef]
- Khesin, B.; Lenells, J.; Misiolek, G. Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 2008, 342, 617. [Google Scholar] [CrossRef] [Green Version]
- Christov, O. On the nonlocal symmetries of the μ-Camassa-Holm equation. J. Nonlinear Math. Phys. 2012, 3, 1250025. [Google Scholar] [CrossRef]
- Qu, C.Z.; Fu, Y.; Liu, Y. Well-posedness, wave breaking and peakons for a modified μ-Camassa-Holm equation. J. Funct. Anal. 2014, 266, 433. [Google Scholar] [CrossRef]
- Qu, C.Z.; Fu, Y.; Liu, Y. Blow-up solutions and peakons to a generalized μ-Camassa-Holm integrable equation. Commun. Math. Phys. 2014, 266, 375. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.Z.; Zhang, Y.; Liu, X.C.; Liu, Y. Orbital stability of periodic peakons to a generalized μ-Camassa-Holm equation. Arch. Ration. Mech. Anal. 2014, 211, 593. [Google Scholar] [CrossRef]
- Liu, X.C.; Liu, Y.; Olver, P.J.; Qu, C.Z. Orbital stability of peakons for a generalization of the modified Camassa-Holm equation. Nonlinearity 2014, 27, 2297. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Olver, P.J.; Qu, C.Z.; Zhang, S.H. On the blow-up of solutions to the integrable modified Camassa-Holm equation. Anal. Appl. 2014, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Chern, S.S.; Tenenblat, K. Pseudo-spherical surfaces and evolution equations. Stud. Appl. Math. 1986, 74, 55. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | −2 | 2 | |
0 | 0 | 2 | 0 | ||
0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | −2 | 2 | |
0 | 0 | 2 | 0 | ||
0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Li, Y. Generalized Nonlocal Symmetries of Two-Component Camassa–Holm and Hunter–Saxton Systems. Symmetry 2022, 14, 528. https://doi.org/10.3390/sym14030528
Shi Z, Li Y. Generalized Nonlocal Symmetries of Two-Component Camassa–Holm and Hunter–Saxton Systems. Symmetry. 2022; 14(3):528. https://doi.org/10.3390/sym14030528
Chicago/Turabian StyleShi, Zhenhua, and Yan Li. 2022. "Generalized Nonlocal Symmetries of Two-Component Camassa–Holm and Hunter–Saxton Systems" Symmetry 14, no. 3: 528. https://doi.org/10.3390/sym14030528
APA StyleShi, Z., & Li, Y. (2022). Generalized Nonlocal Symmetries of Two-Component Camassa–Holm and Hunter–Saxton Systems. Symmetry, 14(3), 528. https://doi.org/10.3390/sym14030528