New Simpson’s Type Estimates for Two Newly Defined Quantum Integrals
Abstract
:1. Introduction
- Simpson’s 1/3 rule:
- Simpson’s rule:
- To obtain a new Simpson’s type inequality depending upon the two newly defined quantum integrals given in Definitions 3 and 5 which is analogous to 1/3 quadrature formula given by (1) for four panels.
- To extend Simpson’s 3/8 quadrature Formula (2) for six panels in the quantum calculus via indicated quantum integrals.
- To present a counter example which explains the limiting nature of Hölder’s inequality in the quantum framework of calculus.
- To re-capture the classical results involving the classical Hölder’s inequality and making comparison with the results due to q-Hölder’s inequality.
2. Preliminaries
- (i)
- the left –derivatives and right –derivatives are not same for general functions defined over the finite real interval . Indeed, if thenHowever,provided that
- (ii)
- The –integrals and are different for general functions. For instance,Furthermore,subject to the condition that
3. Auxiliary Results
4. Simpson’s Type Inequalities Related to Simpson’s 1/3 Quadrature Rule via Four Panels
5. Quantum Analogues of Simpson’s Inequalities Related to Simpson’s 3/8 Rule
6. Simpson’s Type Inequalities Associated with Classical Integrals
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 4, 1–18. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 7–16. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p-harmonic convex functions. Honam. Math. J. 2018, 40, 239–250. [Google Scholar]
- Iftikhar, S.; Komam, P.; Erden, S. Newton’s type integral inequalities via local fractional integrals. Fractals 2020, 2020. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Brito, A.M.C.; Cruz, D.A. Symmetric Quantum Calculus. Ph.D. Thesis, Aveiro University, Aveiro, Portugal, 2012. [Google Scholar]
- Ernst, T. The History of Q-Calculus and New Method; Department of Mathematics Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. Roy. Soc. Edin. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Almeida, R.; Torres, D.F.M. Non-differentiable variational principles in terms of a quantum operator. Math. Methods Appl. Sci. 2011, 34, 2231–2241. [Google Scholar]
- Cresson, J.; Frederico, G.S.F.; Torres, D.F.M. Constants of motion for non-differentiable quantum variational problems. Topol. Methods Nonlinear. Anal. 2009, 33, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Askey, R.; Wilson, J. Some basic hypergeometric orthogonal polynomials that generalize the Jacobi polynomails. Mem. Am. Math. Soc. 1985, 54, 1–55. [Google Scholar]
- Ismail, M.E.H.; Simeonov, P. q-Difference operators for orthogonal polynomials. J. Comput. Appl. Math. 2009, 233, 749–761. [Google Scholar] [CrossRef] [Green Version]
- Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef] [Green Version]
- Youm, D. q-deformed conformal quantum mechanics. Phys. Rev. D. 2000, 62, 095009. [Google Scholar] [CrossRef] [Green Version]
- Jagannathan, R.; Rao, K.S. Two-Parameter Quantum Algebras, Twin-Basic Numbers, and Associated Generalized Hypergeometric Series. arXiv 2006, arXiv:math/0602613. [Google Scholar]
- Sofonea, D.F. Some properties in q-calculus. Gen. Math. 2008, 16, 47–54. [Google Scholar]
- Sofonea, D.F. Numerical analysis and q-calculus. I. Octogon. 2003, 11, 151–156. [Google Scholar]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
- Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via (α,m)-convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef] [PubMed]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 1–13. [Google Scholar] [CrossRef]
- Bin-Mohsin, B.; Awan, M.U.; Noor, M.A.; Riahi, L.; Noor, K.I.; Almutairi, B. New quantum Hermite–Hadamard inequalities utilizing harmonic convexity of the functions. IEEE Access 2019, 7, 20479–20483. [Google Scholar] [CrossRef]
- Du, T.; Luo, C.; Yu, B. Certain Quantum estimates on the parametrized integral inequalities and their applications. J. Math. Inequal. 2021, 15, 201–228. [Google Scholar] [CrossRef]
- Erden, S.; Iftikhar, S.; Delavar, R.M.; Kumam, P.; Thounthong, P.; Kumam, W. On generalizations of some inequalities for convex functions via quantum integrals. RACSAM 2020, 114, 1–15. [Google Scholar] [CrossRef]
- Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Jhanthanam, S.; Jessada, T.; Sotiris, N.; Kamsing, N. On q-Hermite–Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Noor, M.; Nwaeze, E.R.; Chu, Y.-M. Quantum Hermite—Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 1–20. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite—Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Noor, M.A.; Cristescu, G.; Awan, M.U. Bounds having Riemann type quantum integrals via strongly convex functions. Stud. Sci. Math. Hungar. 2017, 54, 221–240. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Tameru, A.M. New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, 2019, 425. [Google Scholar] [CrossRef] [Green Version]
- Riahi, L.; Awan, M.U.; Noor, M.A. Some complementary q-bounds via different classes of convex functions. Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 171–182. [Google Scholar]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Integral inequalities via fractional quantum calculus. J. Inequal. Appl. 2016, 2016, 81. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, H.; Liu, W.; Park, J. Some quantum estimates of Hermite–Hadamard inequalities for quasi-convex functions. Mathematics 2019, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Kórus, P.; Valdés, J.E.N. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hungar. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.J.; Liko, R.; Kashuri, A.; Hernández, J.E.H. New quantum estimates of trapezium–type inequalities for generalized ϕ-convex functions. Mathematics 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández, J.E.H. Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions. Symmetry 2019, 11, 16. [Google Scholar]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández, J.E.H. Some inequalities using generalized convex functions in quantum analysis. Symmetry 2019, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.J.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raees, M.; Anwar, M.; Vivas-Cortez, M.; Kashuri, A.; Samraiz, M.; Rahman, G. New Simpson’s Type Estimates for Two Newly Defined Quantum Integrals. Symmetry 2022, 14, 548. https://doi.org/10.3390/sym14030548
Raees M, Anwar M, Vivas-Cortez M, Kashuri A, Samraiz M, Rahman G. New Simpson’s Type Estimates for Two Newly Defined Quantum Integrals. Symmetry. 2022; 14(3):548. https://doi.org/10.3390/sym14030548
Chicago/Turabian StyleRaees, Muhammad, Matloob Anwar, Miguel Vivas-Cortez, Artion Kashuri, Muhammad Samraiz, and Gauhar Rahman. 2022. "New Simpson’s Type Estimates for Two Newly Defined Quantum Integrals" Symmetry 14, no. 3: 548. https://doi.org/10.3390/sym14030548
APA StyleRaees, M., Anwar, M., Vivas-Cortez, M., Kashuri, A., Samraiz, M., & Rahman, G. (2022). New Simpson’s Type Estimates for Two Newly Defined Quantum Integrals. Symmetry, 14(3), 548. https://doi.org/10.3390/sym14030548