A Novel Decision-Making Method for Selecting Superintendent Based on a Q-Rung Dual Hesitant Fuzzy Power Partitioned Bonferroni Mean Operator
Abstract
:1. Introduction
2. Related Concepts
2.1. The q-Rung Dual Hesitant Fuzzy Sets
- (1)
- if , then ;
- (2)
- if , then
- if , then ;
- if , then .
2.2. The Power Average Operator
2.3. The Partitioned Bonferroni Mean Operator
3. The Q-Rung Dual Hesitant Fuzzy Partitioned Bonferroni Mean Operators
3.1. The q-Rung Dual Hesitant Fuzzy Power Partitioned Bonferroni Mean Operator
3.2. The q-Rung Dual Hesitant Fuzzy Weighted Power Partitioned Bonferroni Mean Operator
3.3. The q-Rung Dual Hesitant Fuzzy Power Partitioned Geometric Bonferroni Mean Operator
3.4. The q-Rung Dual Hesitant Fuzzy Weighted Power Partitioned Geometric Bonferroni Mean Operator
4. An Approach to MADM with the Proposed Operators
5. Application of the Proposed Method in Superintendent Selection Problem
5.1. Superintendent Selection Process with the Proposed q-RDHFWPPBM Operator
5.2. Parameter Analysis
5.2.1. The Influence of Parameter q
5.2.2. The Influence of Parameter s and t
5.3. Comparison Analysis
5.3.1. The Advantage of Providing DMs More Freedom
5.3.2. The Advantage of Capturing Partitioned Arguments
5.3.3. The Advantage of Considering More Hesitant Information
5.3.4. The Advantage of Reducing Bad Influences of Extreme Values
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yang, J.; Xu, Z. Matrix game-based approach for MADM with probabilistic triangular intuitionistic hesitant fuzzy information and its application. Comput. Ind. Eng. 2022, 163, 107787. [Google Scholar] [CrossRef]
- Shit, C.; Ghorai, G.; Xin, Q.; Gulzar, M. Harmonic aggregation operator with trapezoidal picture fuzzy numbers and its application in a multiple-attribute decision-making problem. Symmetry 2022, 14, 135. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T.; Rangasamy, P. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2017, 25, 1222–1230. [Google Scholar] [CrossRef]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z.; Xia, M. Dual hesitant fuzzy sets. J. Appl. Math. 2012, 2012, 879629. [Google Scholar] [CrossRef]
- Wei, G.; Lu, M. Dual hesitant Pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making. Arch. Control Sci. 2017, 27, 365–395. [Google Scholar] [CrossRef]
- Tang, X.; Wei, G. Multiple attribute decision-making with dual hesitant Pythagorean fuzzy information. Cogn. Comput. 2019, 11, 193–211. [Google Scholar] [CrossRef]
- Wei, G.; Wang, J.; Wei, C.; Wei, Y.; Zhang, Y. Dual hesitant Pythagorean fuzzy Hamy mean operators in multiple attribute decision making. IEEE Access 2019, 7, 86697–86716. [Google Scholar] [CrossRef]
- Xu, Y.; Shang, X.; Wang, J.; Wu, W.; Huang, H. Some q-rung dual hesitant fuzzy Heronian mean operators with their application to multiple attribute group decision-making. Symmetry 2018, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wei, G.; Wei, C.; Wei, Y. Dual hesitant q-rung orthopair fuzzy Muirhead mean operators in multiple attribute decision making. IEEE Access 2019, 7, 67139–67166. [Google Scholar] [CrossRef]
- Kou, Y.; Feng, X.; Wang, J. A Novel q-rung dual hesitant fuzzy multi-attribute decision-making method based on entropy weights. Entropy 2021, 23, 1322. [Google Scholar] [CrossRef]
- Wang, Y.; Shan, Z.; Huang, L. The extension of TOPSIS method for multi-attribute decision-making with q-Rung orthopair hesitant fuzzy sets. IEEE Access 2020, 8, 165151–165167. [Google Scholar] [CrossRef]
- Shao, Y.; Qi, X.; Gong, Z. A general framework for multi-granulation rough decision-making method under q-rung dual hesitant fuzzy environment. Artif. Intell. Rev. 2020, 53, 4903–4933. [Google Scholar] [CrossRef]
- Lin, M.; Li, X.; Chen, R.; Fujita, H.; Lin, J. Picture fuzzy interactional partitioned Heronian mean aggregation operators: An application to MADM process. Artif. Intell. Rev. 2022, 55, 1171–1208. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle medie multiple di potenze. Boll. Unione Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Liu, P.; Wang, P. Multiple-attribute decision-making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers. IEEE Trans. Fuzzy Syst. 2019, 27, 834–848. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J. Some q-rung orthopair fuzzy Bonferroni mean operators and their application to multi-attribute group decision making. Int. J. Intell. Syst. 2018, 33, 315–347. [Google Scholar] [CrossRef]
- He, Y.; He, Z.; Wang, G.; Chen, H. Hesitant fuzzy power Bonferroni means and their application to multiple attribute decision making. IEEE Trans. Fuzzy Syst. 2014, 23, 1655–1668. [Google Scholar] [CrossRef]
- Dutta, B.; Guha, D. Partitioned Bonferroni mean based on linguistic 2-tuple for dealing with multi-attribute group decision making. Appl. Soft Comput. 2015, 37, 166–179. [Google Scholar] [CrossRef]
- Nie, R.X.; Tian, Z.P.; Wang, J.Q.; Hu, J.H. Pythagorean fuzzy multiple criteria decision analysis based on Shapley fuzzy measures and partitioned normalized weighted Bonferroni mean operator. Int. J. Intell. Syst. 2019, 34, 297–324. [Google Scholar] [CrossRef]
- Liu, P.; Chen, S.; Liu, J. Multiple attribute group decision making based on intuitionistic fuzzy interaction partitioned Bonferroni mean operators. Inform. Sci. 2017, 411, 98–121. [Google Scholar] [CrossRef]
- Wei, Y.; Pang, Y. New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making. Int. J. Intell. Syst. 2019, 34, 439–476. [Google Scholar]
- Qin, Y.; Qi, Q.; Scott, P.J.; Jiang, X. Multiple criteria decision making based on weighted Archimedean power partitioned Bonferroni aggregation operators of generalised orthopair membership grades. Soft Comput. 2020, 24, 12329–12355. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Bai, K.; Wang, J.; Zhang, R.; Xing, Y. Pythagorean fuzzy interaction power partitioned Bonferroni means with applications to multi-attribute group decision making. J. Intell. Fuzzy Syst. 2019, 36, 3423–3438. [Google Scholar] [CrossRef]
- Zhang, Z. Maclaurin symmetric means of dual hesitant fuzzy information and their use in multi-criteria decision making. Granul. Comput. 2020, 5, 251–275. [Google Scholar] [CrossRef]
- Liu, P.; Wang, P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 2018, 33, 259–280. [Google Scholar] [CrossRef]
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | ||||
A2 | ||||
A3 | ||||
A4 |
Parameter q | Ranking Orders | |
---|---|---|
q = 3 | ||
q = 4 | ||
q = 5 | ||
q = 6 | ||
q = 7 | ||
q = 8 | ||
q = 9 | ||
q = 10 |
Parameter s and t | Ranking Orders | |
---|---|---|
s = 1, t = 1 | ||
s = 2, t = 1 | ||
s = 3, t = 1 | ||
s = 4, t = 1 | ||
s = 5, t = 1 | ||
s = 6, t = 1 | ||
s = 7, t = 1 | ||
s = 8, t = 1 | ||
s = 9, t = 1 | ||
s = 10, t = 1 |
Parameter s and t | Ranking Orders | |
---|---|---|
DHPFWHM [11] | Cannot be calculated | NA |
DHPFWBM [10] | Cannot be calculated | NA |
WDHFMSM [28] | Cannot be calculated | NA |
q-RDHFWPPBM ) | , |
Parameter s and t | Ranking Orders | |
---|---|---|
q-RDHWHM [12] | Cannot be calculated | NA |
DHq-ROFWMM [13] | Cannot be calculated | NA |
q-RDHFWPPBM ) | , |
Parameter s and t | Ranking Orders | |
---|---|---|
q-ROFWA [29] | Cannot be calculated | NA |
q-RDHFWPPBM ) | , |
Parameter s and t | Ranking Orders | |
---|---|---|
q-RDHFWPPBM (the first round) | , | |
q-RDHFWPPBM (the second round) | , |
Methods | Whether Can Deal with Evaluations with Dual Hesitant Information | Whether Can Deal with Problems with Partitioned Arguments | Whether Can Capture Evaluations That the qth Sum of MD and NMD Is Larger than One | Whether Can Consider the Interrelationship between Attributes | Whether Can Reduce Bad Influences of Extreme Values |
q-RDHWHM [12] | Yes | No | Yes | Yes | No |
DHq-ROFWMM [13] | Yes | No | Yes | Yes | No |
DHPFWHM [11] | Yes | No | No | Yes | No |
DHPFWBM [10] | Yes | No | No | Yes | No |
WDHFMSM [28] | Yes | No | No | Yes | No |
q-ROFWA [29] | No | No | Yes | No | No |
q-RDHFWPPBM | Yes | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Ye, L. A Novel Decision-Making Method for Selecting Superintendent Based on a Q-Rung Dual Hesitant Fuzzy Power Partitioned Bonferroni Mean Operator. Symmetry 2022, 14, 590. https://doi.org/10.3390/sym14030590
Chen T, Ye L. A Novel Decision-Making Method for Selecting Superintendent Based on a Q-Rung Dual Hesitant Fuzzy Power Partitioned Bonferroni Mean Operator. Symmetry. 2022; 14(3):590. https://doi.org/10.3390/sym14030590
Chicago/Turabian StyleChen, Tiedong, and Long Ye. 2022. "A Novel Decision-Making Method for Selecting Superintendent Based on a Q-Rung Dual Hesitant Fuzzy Power Partitioned Bonferroni Mean Operator" Symmetry 14, no. 3: 590. https://doi.org/10.3390/sym14030590
APA StyleChen, T., & Ye, L. (2022). A Novel Decision-Making Method for Selecting Superintendent Based on a Q-Rung Dual Hesitant Fuzzy Power Partitioned Bonferroni Mean Operator. Symmetry, 14(3), 590. https://doi.org/10.3390/sym14030590