Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales
Abstract
:1. Introduction
2. Definitions and Basic Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H. Note on a theorem of Hilbert concerning series of positive term. Proc. Lond. Math. Soc. 1925, 23, 45–46. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Hölder, O. Uber Einen Mittelwerthssatz; Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen: Göttingen, Germany, 1889; pp. 38–47. [Google Scholar]
- Zhao, C.J.; Cheung, W.S. Hölder’s reverse inequality and its applications. Publ. de L’Institut Math. 2016, 99, 211–216. [Google Scholar] [CrossRef]
- Tominaga, M. Specht’s ratio in the Young inequality. Sci. Math. Jpn. 2002, 55, 583–588. [Google Scholar]
- Zhao, C.J.; Cheung, W.S. Reverse Hilbert type inequalities. J. Math. Inequal. 2019, 13, 855–866. [Google Scholar] [CrossRef]
- Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L. Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications. J. Inequal. Appl. 2022, 2022, 1–18. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Kodamasingh, B.; Shaikh, A.A.; Botmart, T.; El-Shorbagy, M.A. Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function. Fractal Fract. 2022, 6, 42. [Google Scholar] [CrossRef]
- Valdes, J.E.N.; Bayraktar, B.; Butt, S.I. New integral inequalities of Hermite–Hadamard type in a generalized context. Punjab Univ. J. Math. 2021, 53, 765–777. [Google Scholar]
- Ahmed, A.M.; AlNemer, G.; Zakarya, M.; Rezk, H.M. Some dynamic inequalities of Hilbert’s type. J. Funct. Spaces 2020, 1–13. [Google Scholar] [CrossRef] [Green Version]
- AlNemer, G.; Zakarya, M.; El-Hamid, H.A.A.; Agarwal, P.; Rezk, H. Some Dynamic Hilbert-type inequality on time scales. Symmetry 2020, 12, 1410. [Google Scholar] [CrossRef]
- Furuichi, S.; Minculete, N. Alternative reverse inequalities for Young’s inequality. arXiv 2011, arXiv:1103.1937. [Google Scholar] [CrossRef]
- Furuichi, S. Refined Young inequalities with Specht’s ratio. J. Egypt. Math. Soc. 2012, 20, 46–49. [Google Scholar] [CrossRef] [Green Version]
- O’Regan, D.; Rezk, H.M.; Saker, S.H. Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with kernels. Results Math. 2018, 73, 1–22. [Google Scholar] [CrossRef]
- Saker, S.H.; Mahmoud, R.R.; Peterson, A. Weighted Hardy-type inequalities on time scales with applications. Mediterr. J. Math. 2016, 13, 585–606. [Google Scholar] [CrossRef]
- AlNemer, G.; Saied, A.I.; Zakarya, M.; El-Hamid, H.A.; Bazighifan, O.; Rezk, H.M. Some New Reverse Hilbert’s Inequalities on Time Scales. Symmetry 2021, 13, 2431. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001; p. 96. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Sandor, J. Inequalities for multiplicative arithmetic functions. arXiv 2011, arXiv:1105.0292. [Google Scholar]
- El-Deeb, A.A.; Elsennary, H.A.; Cheung, W.-S. Some reverse Hölder inequalities with Specht’s ratio on time scales. J. Nonlinear Sci. Appl. 2018, 11, 444–455. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezk, H.M.; AlNemer, G.; Saied, A.I.; Bazighifan, O.; Zakarya, M. Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales. Symmetry 2022, 14, 750. https://doi.org/10.3390/sym14040750
Rezk HM, AlNemer G, Saied AI, Bazighifan O, Zakarya M. Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales. Symmetry. 2022; 14(4):750. https://doi.org/10.3390/sym14040750
Chicago/Turabian StyleRezk, Haytham M., Ghada AlNemer, Ahmed I. Saied, Omar Bazighifan, and Mohammed Zakarya. 2022. "Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales" Symmetry 14, no. 4: 750. https://doi.org/10.3390/sym14040750
APA StyleRezk, H. M., AlNemer, G., Saied, A. I., Bazighifan, O., & Zakarya, M. (2022). Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales. Symmetry, 14(4), 750. https://doi.org/10.3390/sym14040750