Subordination Involving Regular Coulomb Wave Functions
Abstract
:1. Introduction
2. Geometric Properties of Coulomb Wave Functions (CWF)
2.1. Subordination by
2.2. Subordination by
2.3. Subordination by
2.4. Subordination by
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baricz, Á. Turán type inequalities for regular Coulomb wave functions. J. Math. Anal. Appl. 2015, 430, 166–180. [Google Scholar] [CrossRef]
- Ikebe, Y. The zeros of regular Coulomb wave functions and of their derivatives. Math. Comput. 1975, 29, 878–887. [Google Scholar]
- Miyazaki, Y.; Kikuchi, Y.; Cai, D.; Ikebe, Y. Error analysis for the computation of zeros of regular Coulomb wave function and its first derivative. Math. Comput. 2001, 70, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Aktaş, İ. Lemniscate and exponential starlikeness of regular Coulomb wave functions. Stud. Sci. Math. Hung. 2020, 57, 372–384. [Google Scholar] [CrossRef]
- Humblet, J. Bessel function expansions of Coulomb wave functions. J. Math. Phys. 1985, 26, 656–659. [Google Scholar] [CrossRef] [Green Version]
- Humblet, J. Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Phys. 1984, 155, 461–493. [Google Scholar] [CrossRef]
- Thompson, I.J.; Barnett, A.R. Coulomb and Bessel functions of complex arguments and order. J. Comput. Phys. 1986, 64, 490–509. [Google Scholar] [CrossRef]
- Michel, N. Precise Coulomb wave functions for a wide range of complex l, η and z. Comput. Phys. Commun. 2007, 176, 232–249. [Google Scholar] [CrossRef] [Green Version]
- Štampach, F.; Šťovíček, P. Orthogonal polynomials associated with Coulomb wave functions. J. Math. Anal. Appl. 2014, 419, 231–254. [Google Scholar] [CrossRef]
- Nishiyama, T. Application of Coulomb wave functions to an orthogonal series associated with steady axisymmetric Euler flows. J. Approx. Theory 2008, 151, 42–59. [Google Scholar] [CrossRef] [Green Version]
- Gaspard, D. Connection formulas between Coulomb wave functions. J. Math. Phys. 2018, 59, 112104. [Google Scholar] [CrossRef]
- Baricz, Á.; Çaǧlar, M.; Deniz, E.; Toklu, E. Radii of starlikeness and convexity of regular Coulomb wave functions. arXiv 2016, arXiv:1605.06763. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. I. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Sufficient conditions for Janowski starlikeness. Int. J. Math. Math. Sci. 2007, 2007, 062925. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Chandrashekar, R.; Ravichandran, V. Janowski starlikeness for a class of analytic functions. Appl. Math. Lett. 2011, 24, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Mondal, S.R.; Mohammed, A.D. Relations between the generalized Bessel functions and the Janowski class. Math. Inequal. Appl. 2018, 21, 165–178. [Google Scholar]
- Mondal, S.R.; Swaminathan, A. Geometric properties of generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2012, 35, 179–194. [Google Scholar]
- Madaan, V.; Kumar, A.; Ravichandran, V. Lemniscate convexity of generalized Bessel functions. Stud. Sci. Math. Hung. 2019, 56, 404–419. [Google Scholar] [CrossRef]
- Naz, A.; Nagpal, S.; Ravichandran, V. Exponential starlikeness and convexity of confluent hypergeometric, Lommel, and Struve functions. Mediterr. J. Math. 2020, 17, 22. [Google Scholar] [CrossRef]
- Naz, A.; Nagpal, S.; Ravichandran, V. Star-likeness associated with the exponential function. Turk. J. Math. 2019, 43, 1353–1371. [Google Scholar] [CrossRef]
- Baricz, Á.; Štampach, F. The Hurwitz-type theorem for the regular Coulomb wave function via Hankel determinants. Linear Algebra Appl. 2018, 548, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and inequalities in the complex plane. J. Differ. Equ. 1987, 67, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Monographs and Textbooks in Pure and Applied Mathematics; Dekker: New York, NY, USA, 2000; p. 225. [Google Scholar]
- Madaan, V.; Kumar, A.; Ravichandran, V. Starlikeness associated with lemniscate of Bernoulli. Filomat 2019, 33, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, S.R. Subordination Involving Regular Coulomb Wave Functions. Symmetry 2022, 14, 1007. https://doi.org/10.3390/sym14051007
Mondal SR. Subordination Involving Regular Coulomb Wave Functions. Symmetry. 2022; 14(5):1007. https://doi.org/10.3390/sym14051007
Chicago/Turabian StyleMondal, Saiful R. 2022. "Subordination Involving Regular Coulomb Wave Functions" Symmetry 14, no. 5: 1007. https://doi.org/10.3390/sym14051007
APA StyleMondal, S. R. (2022). Subordination Involving Regular Coulomb Wave Functions. Symmetry, 14(5), 1007. https://doi.org/10.3390/sym14051007