Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System
Abstract
:1. Introduction and Main Results
- (i)
- System (1) has, up to the first order averaging, at most 1 limit cycle bifurcates from the origin, and this number can be reached if one of the following two conditions holds:
- (ii)
- System (1) has, up to the second order averaging, at most 3 limit cycles that bifurcate from the origin, and this number can be reached if the following condition holds:
2. Preliminary Results
- (i)
- for all , , , R, are locally Lipschitz in the variable , and R is differentiable with respect to ε.
- (ii)
- Assume that for and with (here ). Suppose that for some with , there exists a bounded open set of such that for all , and that , where is the Brouwer degree of at 0 in the set V.
3. Stability Conditions of the Chua System
4. Bifurcation of Limit Cycles of the Chua System
5. Zero-Hopf Bifurcation in a Special Chua System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chua, L.; Komuro, M.; Matsumoto, T. The double scroll family. IEEE Trans. Circuits Syst. 1986, 33, 1072–1097. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Singh, S. Robust control of chaos in Chua’s circuit based on internal model principle. Chaos Solitons Fractals 2007, 31, 1095–1107. [Google Scholar] [CrossRef]
- Riaza, R. Dynamical properties of electrical circuits with fully nonlinear memristors. Nonlinear Anal. Real World Appl. 2011, 12, 3674–3686. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Lin, Y.; Dai, Y. Hopf bifurcation and hidden attractor of a modified Chua’s equation. Nonlinear Dyn. 2017, 90, 2013–2021. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Kuznetsova, O.; Leonov, G.; Mokaev, T.; Stankevich, N. Hidden attractors localization in Chua circuit via the describing function method. IFAC-PapersOnLine 2017, 50, 2651–2656. [Google Scholar] [CrossRef]
- Tsafack, N.; Kengne, J. Complex dynamics of the Chua’s circuit system with adjustable symmetry and nonlinearity: Multistability and simple circuit realization. World J. Appl. Phys. 2019, 4, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Llibre, J.; Valls, C. Analytic integrability of a Chua system. J. Math. Phys. 2008, 48, 102701. [Google Scholar] [CrossRef]
- Rossetto, B.; Ginoux, J.M. Differential geometry and mechanics: Applications to chaotic dynamical systems. Int. J. Bifurc. Chaos 2006, 4, 887–910. [Google Scholar]
- Messias, M. Dynamics at infinity of a cubic Chua’s system. Int. J. Bifurc. Chaos 2011, 21, 333–340. [Google Scholar] [CrossRef]
- Messias, M.; Braga, D.C.; Mello, L.F. Degenerate Hopf bifurcations in Chua’s system. Int. J. Bifurc. Chaos 2009, 19, 497–515. [Google Scholar] [CrossRef]
- Algaba, A.; Merino, M.; Fernández-Sánchez, F.; Rodríguez-Luis, A.J. Hopf bifurcations and their degeneracies in Chua’s equation. Int. J. Bifurc. Chaos 2011, 21, 2749–2763. [Google Scholar] [CrossRef]
- Llibre, J.; Buzzi, C.A.; da Silva, P.R. 3-dimensional Hopf bifurcation via averaging theory. Discret. Contin. Dyn. Syst. 2007, 17, 529–540. [Google Scholar] [CrossRef]
- Llibre, J.; Makhlouf, A. Zero-Hopf periodic orbits for a Rössler differential system. Int. J. Bifurc. Chaos 2020, 30, 2050170. [Google Scholar] [CrossRef]
- Sang, B.; Huang, B. Zero-Hopf bifurcations of 3D quadratic Jerk system. Mathematics 2020, 8, 1454. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, B. Local stability and Hopf bifurcations analysis of the Muthuswamy-Chua-Ginoux system. Nonlinear Dyn. 2022, 1–17. [Google Scholar] [CrossRef]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer: New York, NY, USA, 1993. [Google Scholar]
- Kuznetsov, Y. Elements of Applied Bifurcation Theory; Springer: New York, NY, USA, 2004. [Google Scholar]
- Euzébio, R.; Llibre, J. Zero-Hopf bifurcation in a Chua system. Nonlinear Anal. Real World Appl. 2017, 37, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.; Wang, D. Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci. 2008, 1, 507–539. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Mou, C.; Niu, W.; Wang, D. Stability analysis for discrete biological models using algebraic methods. Math. Comput. Sci. 2011, 5, 247–262. [Google Scholar] [CrossRef]
- Buchberger, B. Gröbner bases: An algorithmic method in polynomial ideal theory. In Multidimensional Systems Theory; Bose, N.K., Ed.; Reidel: Dordrecht, The Netherlands, 1985; pp. 184–232. [Google Scholar]
- Yang, L.; Xia, B. Real solution classifications of parametric semi-algebraic systems. In Algorithmic Algebra and Logic, Proceedings of the A3L, Passau, Germany, 3–6 April 2005; Dolzmann, A., Seidl, A., Sturm, T., Eds.; Herstellung und Verlag: Norderstedt, Germany, 2005; pp. 281–289. [Google Scholar]
- Buicǎ, A.; Llibre, J. Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 2004, 128, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Llibre, J.; Novaes, D.D.; Teixeira, M.A. Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity 2014, 27, 563–583. [Google Scholar] [CrossRef] [Green Version]
- Sanders, J.A.; Verhulst, F.; Murdock, J. Averaging Methods in Nonlinear Dynamical Systems, 2nd ed.; Applied Mathematical Sciences Series; Springer: New York, NY, USA, 2007; Volume 59. [Google Scholar]
- Llibre, J.; Moeckel, R.; Simó, C. Central Configuration, Periodic Oribits, and Hamiltonian Systems; Advanced Courses in Mathematics-CRM Barcelona Series; Birkhäuser: Basel, Switzerland, 2015. [Google Scholar]
- Browder, F.E. Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 1983, 9, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, P.; Tismenetsky, M. The Theory of Matrices: With Applications; Academic Press: London, UK, 1985. [Google Scholar]
- Lazard, D.; Rouillier, F. Solving parametric polynomial systems. J. Symb. Comput. 2007, 42, 636–667. [Google Scholar] [CrossRef] [Green Version]
- Xia, B. DISCOVERER: A tool for solving semi-algebraic systems. ACM Commun. Comput. Algebra 2007, 41, 102–103. [Google Scholar] [CrossRef]
- Chen, C.; Davenport, J.H.; May, J.P.; Moreno Maza, M.; Xia, B.; Xiao, R. Triangular decomposition of semi-algebraic systems. J. Sym. Compt. 2013, 49, 3–26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Niu, W.; Xie, S. Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System. Symmetry 2022, 14, 1036. https://doi.org/10.3390/sym14051036
Huang B, Niu W, Xie S. Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System. Symmetry. 2022; 14(5):1036. https://doi.org/10.3390/sym14051036
Chicago/Turabian StyleHuang, Bo, Wei Niu, and Shaofen Xie. 2022. "Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System" Symmetry 14, no. 5: 1036. https://doi.org/10.3390/sym14051036
APA StyleHuang, B., Niu, W., & Xie, S. (2022). Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System. Symmetry, 14(5), 1036. https://doi.org/10.3390/sym14051036