Some New Quantum Hermite-Hadamard Type Inequalities for s-Convex Functions
Abstract
:1. Introduction
2. Quantum Calculus
2.1. q-Integrals and Related Inequalities
2.2. -Integrals and -Hermite-Hadamard Inequalities
3. Generalized Quantum Hermite Hadamard Inequalities
4. Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dragomir, S.S.; Pearce, C.E.M. Selected topics on Hermite-Hadamard inequalities and applications. In RGMIA Monographs; Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Dragomi, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z. On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transform. Spec. Funct. 2014, 25, 134–147. [Google Scholar] [CrossRef]
- Dragomir, S.S. On the Hadamard’s inequality for functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Özdemir, M.E. Some Hadamard-Type inequalities for coordinated p-convex functions and Godunova-Levin functions. AIP Conf. Proc. 2010, 1309, 7–15. [Google Scholar]
- Ali, A.; Gulshan, G.; Hussain, R.; Latif, A.; Muddassar, M. Generalized inequalities of the type of Hermite-Hadamard-Fejer with quasi-convex functions by way of k-fractional derivative. J. Comput. Anal. Appl. 2017, 22, 1208–1219. [Google Scholar]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y.M. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Differ. Equ. 2021, 64, 1–21. [Google Scholar] [CrossRef]
- Ali, M.A.; Alp, N.; Budak, H.; Agarwal, P. On some new trapezoidal inequalities for qϰ2-quantum integrals via Green function. J. Anal. 2021, 30, 15–33. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are quasi-convex. Res. Rep. Coll. 2009, 12, 14. [Google Scholar]
- Bakula, M.K. An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates. Aust. J. Math. Anal. Appl. 2014, 11, 1–7. [Google Scholar]
- Budak, H. Some trapezoid and midpoint type inequalities for newly defined quantum integrals. Proyecciones 2021, 40, 199–215. [Google Scholar] [CrossRef]
- Gürbüz, M.; Özdemir, M.E. On some inequalities for product of different kinds of convex functions. Turk. J. Sci. 2020, 5, 23–27. [Google Scholar]
- Kalsoom, H.; Ali, M.A.; Idrees, M.; Agarwal, P.; Arif, M. New post quantum analogues of Hermite–Hadamard type inequalities for interval-valued convex functions. Math. Probl. Eng. 2021, 2021, 5529650. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum integral inequalities of Hermite-Hadamard-type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
- Hussain, R.; Ali, A.; Gulshan, G.; Latif, A. Hermite-Hadamard type Inequalities for k-Riemann-Liouville fractional Integrals via two kinds of convexity. Austral. J. Math. Anal. Appl. 2016, 13, 1–12. [Google Scholar]
- Hussain, R.; Ali, A.; Latif, A.; Gulshan, G. Some k-fractional associates of Hermite-Hadamard’s inequality for quasi-convex functions and applications to special means. J. Fract. Differ. Calc. 2017, 7, 301–309. [Google Scholar] [CrossRef]
- Hussain, R.; Kehkashan, B.; Ali, A.; Latif, A.; Rauf, K. Some generalized k-fractional companions of Hadamard’s inequality. Niger. J. Math. Appl. 2016, 25, 8–18. [Google Scholar]
- Ozdemir, M.E.; Yildiz, C.; Akdemir, A.O. On the co-ordinated convex functions. Appl. Math. Inf. Sci. 2014, 8, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, M.E. New Refinements of Hadamard Integral inequlaity via k-Fractional Integrals for p-convex function. Turk. J. Sci. 2021, 6, 1–5. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.Y.; Tseng, K.L.; Yang, G.S. Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane. Taiwan. J. Math. 2007, 11, 63–73. [Google Scholar]
- Xi, B.Y.; Hua, J.; Qi, F. Hermite-Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle. J. Appl. Anal. 2014, 20, 1–17. [Google Scholar] [CrossRef]
- You, X.; Kara, H.; Budak, H.; Kalsoom, H. Quantum inequalities of Hermite-Hadamard type for r-convex functions. J. Math. 2021, 2021, 6634614. [Google Scholar] [CrossRef]
- Zhuang, H.; Liu, W.; Park, J. Some quantum estimates of Hermite-Hadamard inequalities for quasi-convex function. Mathematics 2019, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 686–696. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. The Hadamards inequality for s-convex function of 2-variables on the coordinates. Int. J. Math. Anal. 2008, 2, 629–638. [Google Scholar]
- Alomari, M.; Darus, M.; Kirmaci, U.S. Some inequalities of Hermite-Hadamard type for s-convex functions. Acta Math. Sci. 2011, 31, 1643–1652. [Google Scholar] [CrossRef]
- Avci, M.; Kavurmaci, H.; Özdemir, M.E. New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications. Appl. Math. Comput. 2011, 17, 5171–5176. [Google Scholar] [CrossRef]
- Chen, F.X.; Wu, S.H. Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions. J. Nonlinear Sci. Appl. 2016, 9, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Chu, Y.; Khan, T.U.; Khan, J. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Kórus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions. Aequationes Math. 2019, 93, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Kiriş, M.E. Some new inequalities of Hermite-Hadamard type for s-convex functions. Miskolc Math. Notes 2015, 16, 491–501. [Google Scholar] [CrossRef]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin, Germany, 2001. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Asawasamrit, S.; Ali, M.A.; Budak, H.; Ntouyas, S.K.; Tariboon, J. Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications. AIMS Math. 2021, 6, 13327–13346. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z. q-Inequalities on quantum integral. Malaya J. Mat. 2020, 8, 2035–2044. [Google Scholar] [CrossRef]
- Alp, N.; Sariakaya, M.Z. A new Definition and properties of quantum integral which calls -integral. Konuralp J. Math. 2017, 5, 146–159. [Google Scholar]
- Kara, H.; Budak, H.; Alp, N.; Kalsoom, H.; Sarikaya, M.Z. On new generalized quantum integrals and related Hermite-Hadamard inequalities. J. Inequalities Appl. 2021, 2021, 180. [Google Scholar] [CrossRef]
- Kara, H.; Budak, H. On Hermite-Hadamard type inequalities for newly defined generalized quantum integrals. Ric. Mat. 2021. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; Iscan, I. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Korus, P.; Valdes, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hungar. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud Univ. 2017, 29, 263–273. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z. Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. E-Notes 2020, 20, 341–356. [Google Scholar]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulshan, G.; Budak, H.; Hussain, R.; Nonlaopon, K. Some New Quantum Hermite-Hadamard Type Inequalities for s-Convex Functions. Symmetry 2022, 14, 870. https://doi.org/10.3390/sym14050870
Gulshan G, Budak H, Hussain R, Nonlaopon K. Some New Quantum Hermite-Hadamard Type Inequalities for s-Convex Functions. Symmetry. 2022; 14(5):870. https://doi.org/10.3390/sym14050870
Chicago/Turabian StyleGulshan, Ghazala, Hüseyin Budak, Rashida Hussain, and Kamsing Nonlaopon. 2022. "Some New Quantum Hermite-Hadamard Type Inequalities for s-Convex Functions" Symmetry 14, no. 5: 870. https://doi.org/10.3390/sym14050870
APA StyleGulshan, G., Budak, H., Hussain, R., & Nonlaopon, K. (2022). Some New Quantum Hermite-Hadamard Type Inequalities for s-Convex Functions. Symmetry, 14(5), 870. https://doi.org/10.3390/sym14050870