A Semi-Analytical Method to Investigate Fractional-Order Gas Dynamics Equations by Shehu Transform
Abstract
:1. Introduction
2. Basic Definitions
3. The Methodology of Variational Iteration Transform Technique
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Botmart, T.; Mohammed, W.; Ali, A. Numerical investigation of fractional-order Kersten–Krasil’shchik coupled KdV–mKdV system with Atangana–Baleanu derivative. Adv. Contin. Discret. Model. 2022, 2022, 37. [Google Scholar]
- Alshammari, S.; Yar, M. Fractional-View Analysis of Space-Time Fractional Fokker-Planck Equations within Caputo Operator. J. Funct. Spaces 2022, 2022, 4471757. [Google Scholar] [CrossRef]
- Iqbal, N.; Albalahi, A.; Abdo, M.; Mohammed, W. Analytical Analysis of Fractional-Order Newell-Whitehead-Segel Equation: A Modified Homotopy Perturbation Transform Method. J. Funct. Spaces 2022, 2022, 3298472. [Google Scholar] [CrossRef]
- Yasmin, H.; Iqbal, N. A Comparative Study of the Fractional Coupled Burgers and Hirota–Satsuma KdV Equations via Analytical Techniques. Symmetry 2022, 14, 1364. [Google Scholar] [CrossRef]
- Mohamad-Jawad, A.; Petkovic, M.; Biswas, A. Applications of He’s principles to partial differential equations. Appl. Math. Comput. 2011, 217, 7039–7047. [Google Scholar] [CrossRef]
- Elizarova, T.G. Quasi-gas-dynamic Equations. In Quasi-Gas Dynamic Equations; Springer: Berlin/Heidelberg, Germany, 2009; pp. 37–62. [Google Scholar]
- Singh, J.; Kumar, D.; Kılıçman, A. Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform. Abstr. Appl. Anal. 2013, 2013, 934060. [Google Scholar] [CrossRef]
- Bhadane, P.K.G.; Pradhan, V.H. Elzaki transform homotopy perturbation method for solving Gas Dynamics equation. Int. J. Res. Eng. Technol. 2013, 2, 260–264. [Google Scholar]
- Tamsir, M.; Srivastava, V. Revisiting the approximate analytical solution of fractional-order gas dynamics equation. Alex. Eng. J. 2016, 55, 867–874. [Google Scholar] [CrossRef]
- Evans, D.; Bulut, H. A New Approach to the Gas Dynamics Equation: An Application of the Decomposition Method. Int. J. Comput. Math. 2002, 79, 817–822. [Google Scholar] [CrossRef]
- Iyiola, O. On the solutions of non-linear time-fractional gas dynamic equations: An analytical approach. Int. J. Pure Appl. Math. 2015, 98, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Rashidi, M. New analytical method for gas dynamics equation arising in shock fronts. Comput. Phys. Commun. 2014, 185, 1947–1954. [Google Scholar] [CrossRef]
- Hemeda, A.; Saleh Alluhaibi, M. New iterative method for solving gas dynamic equation. Int. J. Appl. Math. Res. 2014, 3, 190. [Google Scholar] [CrossRef]
- Shah, N.A.; Agarwal, P.; Chung, J.D.; El-Zahar, E.R.; Hamed, Y.S. Analysis of optical solitons for nonlinear Schrodinger equation with detuning term by iterative transform method. Symmetry 2020, 12, 1850. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D. Homotopy Perturbation Algorithm Using Laplace Transform for Gas Dynamics Equation. J. Appl. Math. Stat. Inform. 2012, 8, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Maitama, S.; Kurawa, S. An efficient technique for solving gas dynamics equation using the natural decomposition method. Int. Math. Forum 2014, 9, 1177–1190. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.M.; Bani Hani, E.H.; El-Zahar, E.R.; Ebaid, A.; Shah, N.A. Combination of Shehu decomposition and variational iteration transform methods for solving fractional third order dispersive partial differential equations. Numer. Methods Partial Differ. Equ. 2021. [Google Scholar] [CrossRef]
- Ahmad, H.; Khan, T.; Stanimirović, P.; Chu, Y.; Ahmad, I. Modified Variational Iteration Algorithm-II: Convergence and Applications to Diffusion Models. Complexity 2020, 2020, 8841718. [Google Scholar] [CrossRef]
- Rashid, S.; Hammouch, Z.; Ashraf, R.; Chu, Y. New Computation of Unified Bounds via a More General Fractional Operator Using Generalized Mittag–Leffler Function in the Kernel. Comput. Model. Eng. Sci. 2021, 126, 359–378. [Google Scholar] [CrossRef]
- Jin, F.; Qian, Z.S.; Chu, Y.M.; ur Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
- Ma, W.X.; Lee, J.H. A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 2009, 42, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Ma, W. Soliton solutions by means of Hirota bilinear forms. Partial Differ. Equ. Appl. Math. 2022, 5, 100220. [Google Scholar] [CrossRef]
- Ma, W. Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems. Partial Differ. Equ. Appl. Math. 2021, 4, 100190. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Sci. Publishing: River Edge, NJ, USA, 2000. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Palani, M.; Usachev, A. Successive approximations of solutions to the Caputo fractional differential equations. Fract. Differ. Calc. 2020, 10, 153–167. [Google Scholar] [CrossRef]
- Areshi, M.; Khan, A.; Shah, R.; Nonlaopon, K. Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform. AIMS Math. 2022, 7, 6936–6958. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aljahdaly, N.H.; Ali, A.; Shah, R.; Mahariq, I.; Tchalla, A.M. Φ-Haar Wavelet Operational Matrix Method for Fractional Relaxation-Oscillation Equations Containing Φ-Caputo Fractional Derivative. J. Funct. Spaces 2021, 2021, 7117064. [Google Scholar] [CrossRef]
- Shah, N.; Alyousef, H.; El-Tantawy, S.; Shah, R.; Chung, J. Analytical Investigation of Fractional-Order Korteweg–De-Vries-Type Equations under Atangana–Baleanu–Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- El-Sayed, A.; Hamdallah, E.; Ba-Ali, M. Qualitative Study for a Delay Quadratic Functional Integro-Differential Equation of Arbitrary (Fractional) Orders. Symmetry 2022, 14, 784. [Google Scholar] [CrossRef]
- Inokuti, M.; Sekine, H.; Mura, T. General use of the Lagrange multiplier in nonlinear mathematical physics. Var. Method Mech. Solids 1978, 33, 156–162. [Google Scholar]
- Nonlaopon, K.; Naeem, M.; Zidan, A.; Shah, R.; Alsanad, A.; Gumaei, A. Numerical Investigation of the Time-Fractional Whitham–Broer–Kaup Equation Involving without Singular Kernel Operators. Complexity 2021, 2021, 7979365. [Google Scholar] [CrossRef]
- He, J. Variational iteration method—A kind of non-linear analytical technique: Some examples. Int. J. Non-Linear Mech. 1999, 34, 699–708. [Google Scholar] [CrossRef]
- Yang, X.; Baleanu, D. Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 2013, 17, 625–628. [Google Scholar] [CrossRef]
- Shah, N.A.; Dassios, I.; Chung, J.D. A decomposition method for a fractional-order multi-dimensional telegraph equation via the Elzaki transform. Symmetry 2020, 13, 8. [Google Scholar] [CrossRef]
- Moghimi, M.; Hejazi, F. Variational iteration method for solving generalized Burger–Fisher and Burger equations. Chaos Solitons Fractals 2007, 33, 1756–1761. [Google Scholar] [CrossRef]
- Wazwaz, A. The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. Appl. 2007, 54, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Inc, M. Numerical simulation of KdV and mKdV equations with initial conditions by the variational iteration method. Chaos Solitons Fractals 2007, 34, 1075–1081. [Google Scholar] [CrossRef]
- He, J.; Wu, X. Variational iteration method: New development and applications. Comput. Math. Appl. 2007, 54, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Lee, E. Fractional variational iteration method and its application. Phys. Lett. A 2010, 374, 2506–2509. [Google Scholar] [CrossRef]
- Hesameddini, E.; Latifizadeh, H. Reconstruction of Variational Iteration Algorithms using the Laplace Transform. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 1377–1382. [Google Scholar] [CrossRef]
- Khuri, S.; Sayfy, A. A Laplace variational iteration strategy for the solution of differential equations. Appl. Math. Lett. 2012, 25, 2298–2305. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.; Elzaki, T.; Algolam, M.; Abd Elmohmoud, E.; Hamza, A. New Modified Variational Iteration Laplace Transform Method Compares Laplace Adomian Decomposition Method for Solution Time-Partial Fractional Differential Equations. J. Appl. Math. 2021, 2021, 6662645. [Google Scholar] [CrossRef]
- Jassim, H.K. Local Fractional Variational Iteration Transform Method for Solving Couple Helmholtz Equations within Local Fractional Operator. J. Zankoy Sulaimani Part A 2016, 18, 249–258. [Google Scholar] [CrossRef]
- Alaoui, M.; Fayyaz, R.; Khan, A.; Shah, R.; Abdo, M. Analytical Investigation of Noyes–Field Model for Time-Fractional Belousov–Zhabotinsky Reaction. Complexity 2021, 2021, 3248376. [Google Scholar] [CrossRef]
- Aljahdaly, N.; Akgül, A.; Shah, R.; Mahariq, I.; Kafle, J. A Comparative Analysis of the Fractional-Order Coupled Korteweg–De Vries Equations with the Mittag–Leffler Law. J. Math. 2022, 2022, 8876149. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Ullah, R.; Khan, A.; Shah, R.; Kafle, J.; Mahariq, I.; Jarad, F. Numerical Analysis of the Fractional-Order Nonlinear System of Volterra Integro-Differential Equations. J. Funct. Spaces 2021, 2021, 1537958. [Google Scholar] [CrossRef]
- Maitama, S.; Zhao, W. New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations. arXiv 2019, arXiv:1904.11370. [Google Scholar]
- Bokhari, A. Application of Shehu transform to Atangana-Baleanu derivatives. J. Math. Comput. Sci. 2019, 20, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, R.; Baleanu, D.; Bokhar, A. Shehu transform and Applications to Caputo-Fractional Differential Equations. Int. J. Anal. Appl. 2019, 17, 917–927. [Google Scholar]
- Kumar, S.; Kocak, H.; Yildirim, A. A fractional model of gas dynamics equations and its analytical approximate solution using Laplace transform. Z. Naturforschung A 2012, 67, 389–396. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, R.; Saad Alshehry, A.; Weera, W. A Semi-Analytical Method to Investigate Fractional-Order Gas Dynamics Equations by Shehu Transform. Symmetry 2022, 14, 1458. https://doi.org/10.3390/sym14071458
Shah R, Saad Alshehry A, Weera W. A Semi-Analytical Method to Investigate Fractional-Order Gas Dynamics Equations by Shehu Transform. Symmetry. 2022; 14(7):1458. https://doi.org/10.3390/sym14071458
Chicago/Turabian StyleShah, Rasool, Azzh Saad Alshehry, and Wajaree Weera. 2022. "A Semi-Analytical Method to Investigate Fractional-Order Gas Dynamics Equations by Shehu Transform" Symmetry 14, no. 7: 1458. https://doi.org/10.3390/sym14071458
APA StyleShah, R., Saad Alshehry, A., & Weera, W. (2022). A Semi-Analytical Method to Investigate Fractional-Order Gas Dynamics Equations by Shehu Transform. Symmetry, 14(7), 1458. https://doi.org/10.3390/sym14071458