On Fractional Newton Inequalities via Coordinated Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. An Identity
4. Fractional Newton-Type Inequalities for Coordinated Convex Functions
5. Fractional Newton Inequality Based on Functions of Two Variables with Bounded Variation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. Res. Rep. Collect. 2009, 12, 1–18. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. Res. Rep. Collect. 2010, 13, 2. [Google Scholar]
- Liu, Z. An inequality of Simpson type. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 2155–2158. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Li, Y.J.; Du, T.S. A generalization of Simpson type inequality via differentiable functions using (s,m)-convex functions. Ital. J. Pure Appl. Math. 2015, 35, 327–338. [Google Scholar]
- Du, T.S.; Liao, J.G.; Li, Y.J. Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112–3126. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H.; Kara, H. New version of fractional Simpson type inequalities for twice differentiable functions. Adv. Differ. Equ. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Tunç, T.; Budak, H. Simpson’s type inequality for F-convex function. Facta Univ. Ser. Math. Inform. 2017, 32, 747–753. [Google Scholar]
- Gao, S.; Shi, W. On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex. Int. J. Pure Appl. Math. 2012, 74, 33–41. [Google Scholar]
- Erden, S.; Iftikhar, S.; Kumam, P.; Thounthong, P. On error estimations of Simpson’s second type quadrature formula. Math. Methods Appl. Sci. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 7–16. [Google Scholar]
- Iftikhar, S.; Erden, S.; Ali, M.A.; Baili, J.; Ahmad, H. Simpson’s second-type inequalities for co-ordinated convex functions and applications for cubature formulas. Fractal Fract. 2022, 6, 33. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
- İşcan, İ.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yıldırım, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef]
- Dragomir, S.S. On the midpoint quadrature formula for mappings with bounded variation and applications. Kragujev. J. Math. 2000, 22, 13–19. [Google Scholar]
- Dragomir, S.S. On trapezoid quadrature formula and applications. Kragujev. J. Math. 2001, 23, 25–36. [Google Scholar]
- Dragomir, S.S. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 1999, 30, 53–58. [Google Scholar] [CrossRef]
- Jawarneh, Y.; Noorani, M.S.M. Inequalities of Ostrowski and Simpson type for mappings of two variables with bounded variation and applications. TJMM 2011, 3, 81–94, Erratum in TJMM 2018, 10, 71–74. [Google Scholar]
- Moricz, F. Order of magnitude of double Fourier coefficients of functions of bounded variation. Analysis 2002, 22, 335–345. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Nonlaopon, K.; Ali, M.A.; Budak, H. Riemann–Liouville Fractional Newton’s type inequalities for differentiable convex functions. Fractal Fract. 2022, 6, 175. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H.; Kösem, P. On new version of Newton’s inequalities for Riemann-Liouville fractional integrals. Rocky Mt. J. Math. 2022; Accepted. [Google Scholar]
- Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite–Hadamard-type inequalities involving-Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef]
- Awan, M.U.; Javed, M.Z.; Rassias, M.T.; Noor, M.A.; Noor, K.I. Simpson type inequalities and applications. J. Anal. 2021, 29, 1403–1419. [Google Scholar] [CrossRef]
- Luo, C.; Du, T. Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications. Filomat 2020, 34, 751–760. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sarikaya, M.Z. On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transform. Spec. Funct. 2014, 25, 134–147. [Google Scholar] [CrossRef]
- Sabatier, J.A.T.M.J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer: Singapore, 2007. [Google Scholar]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Springer: Singapore, 2011. [Google Scholar]
- Debnath, P.; Srivastava, H.M.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus: Recent Advances and Applications; Springer: Singapore, 2022. [Google Scholar]
- Dragomir, S.S. On Hadamards inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 4, 775–788. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kösem, P.; Kara, H.; Budak, H.; Ali, M.A.; Nonlaopon, K. On Fractional Newton Inequalities via Coordinated Convex Functions. Symmetry 2022, 14, 1526. https://doi.org/10.3390/sym14081526
Kösem P, Kara H, Budak H, Ali MA, Nonlaopon K. On Fractional Newton Inequalities via Coordinated Convex Functions. Symmetry. 2022; 14(8):1526. https://doi.org/10.3390/sym14081526
Chicago/Turabian StyleKösem, Pınar, Hasan Kara, Hüseyin Budak, Muhammad Aamir Ali, and Kamsing Nonlaopon. 2022. "On Fractional Newton Inequalities via Coordinated Convex Functions" Symmetry 14, no. 8: 1526. https://doi.org/10.3390/sym14081526
APA StyleKösem, P., Kara, H., Budak, H., Ali, M. A., & Nonlaopon, K. (2022). On Fractional Newton Inequalities via Coordinated Convex Functions. Symmetry, 14(8), 1526. https://doi.org/10.3390/sym14081526