Multisource Data Hiding in Digital Images
Abstract
:1. Introduction
- (1)
- We propose a new concept called multisource data hiding, which is a new form in the field of data hiding. It is an extension of existing data hiding instead of an application;
- (2)
- We propose two schemes to achieve multisource data hiding to fit different scenarios by improving the data-hiding coding, which are enriched versions of the existing data-hiding framework.
- (3)
- The proposed two schemes achieve new functions (multisource data hiding) with the same rate-distortion performance. It is verified by experiments that our schemes have not decreased the undetectability of existing data hiding.
2. Related Work
2.1. Modern Data Hiding
2.2. Steganalysis for Digital Images
3. Proposed Data-Hiding Schemes
3.1. Separable Multisource Data Hiding
3.2. Anonymous Multisource Data Hiding
4. Experimental Results
4.1. Experiment Setup
4.2. Undetectability
4.3. Computational Complexity
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Feng, G.; Qian, Z.; Zhang, X. JPEG Steganography with Content Similarity Evaluation. IEEE Trans. Cybern. 2022. [Google Scholar] [CrossRef]
- Fridrich, J.; Filler, T. Practical methods for minimizing embedding impact in steganography. Secur. Steganography Watermarking Multimed. Contents IX 2007, 6505, 650502. [Google Scholar]
- Filler, T.; Judas, J.; Fridrich, J. Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 2011, 6, 920–935. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, W.; Li, L.; Zhou, H.; Yu, N. Designing near-optimal steganographic codes in practice based on polar codes. IEEE Trans. Commun. 2020, 68, 3948–3962. [Google Scholar] [CrossRef]
- Li, B.; Wang, M.; Huang, J.; Li, X. A new cost function for spatial image steganography. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4206–4210. [Google Scholar]
- Sedighi, V.; Cogranne, R.; Fridrich, J. Content-adaptive steganography by minimizing statistical detecta-bility. IEEE Trans. Inf. Forensics Secur. 2016, 11, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ruan, D.; Huang, J.; Kang, X.; Shi, Y. An embedding cost learning framework using gan. IEEE Trans. Inf. Forensics Secur. 2019, 15, 839–851. [Google Scholar] [CrossRef]
- Pevny, T.; Filler, T.; Bas, P. Using high-dimensional image models to perform highly undetectable ste-ganography. In Proceedings of the 12th International Conference on Information Hiding, Calgary, AB, Canada, 28–30 June 2010; pp. 161–177. [Google Scholar]
- Vojtech, H.; Fridrich, J. Designing steganographic distortion using directional filters. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Costa Adeje, Spain, 2–5 December 2012; pp. 234–239. [Google Scholar]
- Vojtech, H.; Fridrich, J.; Tomas, D. Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 1–13. [Google Scholar]
- Li, B.; Wang, M.; Li, X.; Tan, S.; Huang, J. A strategy of clustering modification directions in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1905–1917. [Google Scholar]
- Wang, Z.; Yin, Z.; Zhang, X. Asymmetric distortion function for JPEG steganography using block artifact compensation. Int. J. Digit. Crime Forensics 2019, 11, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Qian, Z.; Zhang, X.; Yang, M.; Ye, D. On improving distortion functions for JPEG steganography. IEEE Access 2018, 6, 74917–74930. [Google Scholar] [CrossRef]
- Tang, W.; Li, B.; Tan, S.; Barni, M.; Huang, J. CNN-based adversarial embedding for image steganography. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2074–2087. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Feng, G.; Ren, Y.; Zhang, X. Multichannel steganography in digital images for multiple receivers. IEEE Multimed. 2021, 28, 65–73. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, Z.; Zhang, X.; Li, S. An improved steganalysis method using feature combinations. In Proceedings of the 5th International Conference on Artificial Intelligence and Security (ICAIS 2019), New York, NY, USA, 26–28 July 2019; pp. 115–127. [Google Scholar]
- Fridrich, J.; Kodovsky, J. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882. [Google Scholar] [CrossRef] [Green Version]
- Denemark, T.; Sedighi, V.; Holub, V.; Cogranne, R.; Fridrich, J. Selection-channel-aware rich model for steganalysis of digital images. In Proceedings of the 2014 IEEE International Workshop on Information Forensics and Security (WIFS), Atlanta, GA, USA, 3–5 December 2014; pp. 48–53. [Google Scholar]
- Li, B.; Li, Z.; Zhou, S.; Tan, S.; Zhang, X. New steganalytic features for spatial image steganography based on derivative filters and threshold LBP operator. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1242–1257. [Google Scholar] [CrossRef]
- Goljan, M.; Fridrich, J.; Cogranne, R. Rich model for steganalysis of color images. In Proceedings of the 2014 IEEE International Workshop on Information Forensics and Security (WIFS), Atlanta, GA, USA, 3–5 December 2014; pp. 185–190. [Google Scholar]
- Kodovsky, J.; Fridrich, J.; Holub, V. Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 2012, 7, 432–444. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Ni, J.; Yi, Y. Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2545–2557. [Google Scholar] [CrossRef]
- Boroumand, M.; Chen, M.; Fridrich, J. Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1181–1193. [Google Scholar] [CrossRef]
- Li, Q.; Feng, G.; Ren, Y.; Zhang, X. Embedding Probability Guided Network for Image Steganalysis. IEEE Signal Process. Lett. 2021, 28, 1095–1099. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, G.; Zhang, X. Repeatable Data Hiding: Towards the Reusability of Digital Images. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 135–146. [Google Scholar] [CrossRef]
- Schaefer, G.; Stich, M. UCID: An uncompressed color image database. Storage Retr. Methods Appl. Multimed. 2003, 5307, 472–480. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z. Multisource Data Hiding in Digital Images. Symmetry 2022, 14, 890. https://doi.org/10.3390/sym14050890
Wang Z. Multisource Data Hiding in Digital Images. Symmetry. 2022; 14(5):890. https://doi.org/10.3390/sym14050890
Chicago/Turabian StyleWang, Zichi. 2022. "Multisource Data Hiding in Digital Images" Symmetry 14, no. 5: 890. https://doi.org/10.3390/sym14050890
APA StyleWang, Z. (2022). Multisource Data Hiding in Digital Images. Symmetry, 14(5), 890. https://doi.org/10.3390/sym14050890