The CGEM-IT: An Upgrade for the BESIII Experiment
Abstract
:1. Introduction
1.1. BESII and BEPCII
1.2. BEPCII Upgrade
1.2.1. Top-Up Injection
1.2.2. Energy Upgrades
1.2.3. Luminosity Upgrades
1.3. BESII Upgrade
1.3.1. ETOF Upgrade
1.3.2. Superconducting Magnet New Valve Box
1.3.3. Inner Tracker Upgrade, the IDC Option
2. The CGEM-IT Upgrade
2.1. A GEM-Based Detector
- The drift gap, between the cathode and the GEM, is where the primary ionization takes place and, thus, the generation of electrons. Then, the electrons drift toward the GEM foil. Since the full volume is filled with gas, the ionization can also happen in other parts of the detector but such electrons will not be multiplied enough to contribute significantly to the signal;
- The multiplication region, within the holes of the GEM foil, where the electron avalanche occurs;
- The induction gap, between the GEM and the anode, where the electrical field drives the electron avalanche towards the anode. There, it induces a signal on a patterned readout plane.
2.2. The Cylindrical GEM Inner Tracker
- The cathode foil has a copper thickness of 3 µm on one side of the Kapton substrate, which will face the internal part of the layer. To offer the necessary rigidity and shape, the cathode is also glued to the mechanical inner structure as will be described in detail in Section 3;
- The GEM foils have 5 µm copper on both sides of the Kapton substrate with a specific segmentation for the two faces to optimize the High Voltage (HV) distribution, as will described later in the section;
- The anode foil hosts the readout plane. It is segmented in 5 µm thick strips etched on both the copper sides on the Kapton foil and sealed with an additional foil of 25 µm Kapton glued on them. The strips on the two sides are oriented with different angles as shown in Figure 6b. X strips, parallel to the beam axis, provide the azimuthal coordinate and are 570 µm wide; V strips, 130 µm wide, are oriented in each layer with a different stereo angle. They give, together with the information on the X, the position in the direction parallel to the beam and reduce the ghost hit tracking. The pitch for all the strips is 650 µm. Outside the anode the cylindrical mechanical structure is also glued and, on top of it, there is an additional Kapton foil with 5 µm copper-cladding on the external side. This is the ground plane providing the reference for the front-end electronics.
3. CGEM-IT Mechanics
3.1. Mechanical Requirements
- The space available to fit at best the volume left over from the IDC;
- The material budget to minimize the multiple scattering;
- The performance improvement with respect to the present inner tracker.
3.2. Layer Construction
3.2.1. Validation of the Components
3.2.2. Preparation of the Sub-Layers
3.2.3. Layer Assembly
3.3. Investigation
4. CGEM-IT Electronics
4.1. Front-End Boards
4.2. Tiger ASIC
4.3. Off-Detector Electronics
- Clock generation, synchronization, and distribution to the front-end electronics;
- LV fanout control and monitoring of TIGER bias voltages, drained currents, and operating temperatures;
- Read and write operations of TIGER configuration registers;
- Readout of TIGER raw data, with trigger-less and trigger-matched data processing;
- Communication with the DAQ computer or BESIII slow control system through a Gigabit Ethernet (GbE) port;
- Data collector interface to build packets to be sent through GbE with a User Datagram Protocol (UDP) or optical connection.
5. CGEM-IT Software
5.1. General Software Framework
5.2. Geometry Description and Simulation
5.3. Digitization
5.3.1. Simplified Digitization
5.3.2. Full Digitization
- By sampling the distance to the next ionization from an exponential function with parameters extracted from GARFIELD++ for the specific gas mixture. Since primary ionization is a Poissonian process, this grants a correct simulation of the statistics. The electron number from secondary ionization is extracted from the distribution obtained by GARFIELD++ [75,76].
- By following the electron in its path through each of the three GEMs and by sampling from the transparency probability and the Polya separately at each GEM stage [74];
- By simulating in GARFIELD++ different signals on different strips, induced by single electrons, and by saving them; then by simulating the signal for each electron of the avalanche sampling from this recorded list. Signals on the same strip are summed to obtain the simulation of the final signal shape [74];
- By using a fast induction algorithm, based on the assumption that once all the electrons have been collected by the strips the signal is over and that the total charge measured by a strip equals the number of electrons actually falling on it. Hence, drifting all the electrons from the last GEM foil to the final strip, accounting for Lorentz force and diffusion, and counting them, the total charge is given by the total number of electrons [75,76].
5.4. Reconstruction
5.4.1. Cluster Reconstruction
5.4.2. Track Reconstruction
5.5. Evaluation of the Performance with Benchmarks
6. CGEM-IT Testing and Commissioning
6.1. Test Facility and Test Setup
6.2. Triple-Gem Characterization
6.2.1. Planar Triple-GEM Signal Shape
6.2.2. Planar Triple-GEM Efficiency and Spatial Resolution
6.2.3. Cylindrical Triple-GEM Validation
6.2.4. TIGER and Triple-GEM Validation
6.3. CGEM-IT Commissioning
- The detector HV is controlled by a LabVIEW [94] program, which allows the user to set the electrodes voltage and monitor the absorbed currents;
- The gas flux of Ar and iCH is measured by two flow meters read by an Arduino [95] microcontroller, which is interfaced with a LabVIEW program;
- The temperature and humidity of the room are monitored by commercial sensors and read with another Arduino microcontroller and LabVIEW program;
- The current absorption and operating temperature of the on-detector electronics are read directly by the GEMROC modules and stored.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analogue-to-Digital Converter |
ASIC | Application Specific Integrated Circuit |
BEPCII | Beijing Electron Positron Collider II |
BESIII | BEijing Spectrometer III |
BLH | Baseline holding |
BOSS | BESIII Offline Software System |
BOOST | BESIII Object-Oriented Simulation Tool |
CERN | Conseil Européen pour la Recherche Nucléaire |
CC | Charge Centroid |
CGEM | Cylindrical Gas Electron Multiplier |
CMOS | Complementary metal-oxide semiconductor |
CSA | Charge sensitive amplifier |
DAC | Digital-to-Analogue Converter |
DDR | Double Data Rate |
DLVPC | Data and Low Voltage Patch Card |
DST | Data Summary Tape |
EMC | Electro-Magnetic Calorimeter |
ENC | Equivalent Noise Charge |
ETOF | End-cap Time-Of-Flight |
FEB | Front-End Board |
FPGA | Field Programmable Gate Array |
GbE | Gigabit Ethernet |
GDML | Geometry Description Markup Language |
GEM | Gas Electron Multiplier |
GEMDC | GEM Data Concentrator |
GEMROC | GEM Read-Out Card |
GRAAL | Gem Reconstruction And Analysis Library |
GUFI | Graphical User Front-end Interface |
HV | High Voltage |
IDC | Inner Drift Chamber |
IHEP | Institute of High Energy Physics |
INFN | Istituto Nazionale di Fisica Nucleare |
IT | Inner Tracker |
LQCD | Lattice Quantum Chromo-Dynamics |
LV | Low Voltage |
MC | Monte Carlo |
MDC | Main Drift Chamber |
MPGD | Micro Pattern Gas Detector |
µTPC | micro Time Projection Chamber |
MRPC | Multi-gap Resistive Plate Chamber |
MUC | MUon Counter |
ODC | Outer Drift Chamber |
PLL | Phase-locked loop |
QCD | Quantum Chromo-Dynamics |
S&H | Sample-and-Hold |
SDR | Single Data Rate |
SM | Standard Model |
SSM | Superconducting Solenoid Magnet |
TAC | Time-to-Amplitude Converter |
TDC | Time-to-Digital Converter |
TID | Total Ionizing Dose |
TIGER | Torino Integrated Gem Electronics for Readout |
TOF | Time-Of-Flight |
ToT | Time-over-Threshold |
UDP | User Datagram Protocol |
VIM | Vertical Insertion System |
VME | Versa Module Eurocard |
YBCO | Yttrium Barium Copper Oxide |
References
- Ablikim, M.; An, Z.H.; Bai, J.Z.; Niklaus Berger, J.M.; Bian, J.M.; Cai, X.; Cao, G.F.; Cao, X.X.; Chang, J.F.; Chen, C.; et al. Design and Construction of the BESIII Detector. Nucl. Instrum. Methods Phys. Res. Sect. A 2010, 614, 345. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Pei, G.X. BEPCII: The second phase construction of the Beijing Electron-Positron Collider. In Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN, USA, 16–20 May 2005. [Google Scholar] [CrossRef] [Green Version]
- Karliner, M.; Rosner, J.L.; Skwarnicki, T. Multiquark States. Annu. Rev. Nucl. Part. Sci. 2018, 68, 17–44. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.K.; Olsen, S.L.; Abe, K.; Abe, T.; Adachi, I.; Byoung, S.A.; Aihara, H.; Akai, K.; Akatsu, M.; Akemoto, M.; et al. Observation of a Narrow Charmonium-like State in Exclusive B± → K±π+π−J/ψ Decays. Phys. Rev. Lett. 2003, 91, 262001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; et al. Observation of a Broad Structure in the π+π−J/ψ Mass Spectrum around 4.26 GeV/c2. Phys. Rev. Lett. 2005, 95, 142001. [Google Scholar] [CrossRef] [Green Version]
- Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Ambrose, D.J.; An, F.F.; An, Q.; Bai, J.Z.; Baldini Ferroli, R.; Bhaghyesh, A.; et al. Observation of e+e− → γX(3872) at BESIII. Phys. Rev. Lett. 2014, 112, 092001. [Google Scholar] [CrossRef] [Green Version]
- Ablikim, M.; Achasov, M.N.; Ahmed, S.; Ai, X.C.; Albayrak, O.; Albrecht, M.; Ambrose, D.J.; Amoroso, A.; An, F.F.; An, Q.; et al. Precise measurement of the e+e− → π+π−J/ψ cross section at center-of-mass energies from 3.77 to 4.60 GeV. Phys. Rev. Lett. 2017, 118, 092001. [Google Scholar] [CrossRef] [Green Version]
- Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Ambrose, D.J.; An, F.F.; An, Q.; Bai, J.Z.; Baldini Ferroli, R.; Ban, Y.; et al. Observation of a Charged Charmonium-like Structure in e+e− → π+π−J/ψ at (s)=4.26 GeV. Phys. Rev. Lett. 2013, 110, 252001. [Google Scholar] [CrossRef] [Green Version]
- Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Ambrose, D.J.; An, F.F.; An, Q.; Bai, J.Z.; Baldini Ferroli, R.; Ban, Y.; et al. Observation of a Charged Charmoniumlike Structure Zc(4020) and Search for the Zc(3900) in e+e− → π+π−hc. Phys. Rev. Lett. 2013, 111, 242001. [Google Scholar] [CrossRef] [Green Version]
- Ablikim, M.; Achasov, M.N.; Adlarson, P.; Ahmed, S.; Albrecht, M.; Aliberti, R.; Amoroso, A.; An, Q.; Anita; Bai, X.H.; et al. Observation of a Near-Threshold Structure in the K+ Recoil-Mass Spectra in e+e− → K+(Ds-D*0+Ds*-D0). Phys. Rev. Lett. 2021, 126, 102001. [Google Scholar] [CrossRef]
- Asner, D.M.; Barnes, T.; Bian, J.M.; Bigi, I.I.; Brambilla, N.; Boyko, I.R.; Bytev, V.; Chao, K.T.; Charles, J.; Chen, H.X.; et al. Physics Goal of BESIII. Int. J. Mod. Phys. A 2009, S1, 24. [Google Scholar] [CrossRef]
- Ablikim, M.; Achasov, M.N.; Adlarson, P.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F.F.; An, Q.; Bai, Y.; et al. Future Physics Programme of BESIII. Chin. Phys. C 2020, 44, 040001. [Google Scholar] [CrossRef]
- Yuan, C.Z.; Olsen, S.L. The BESIII physics programme. Nat. Rev. Phys. 2019, S1, 480–494. [Google Scholar] [CrossRef]
- Pakhlova, G.; Adachi, I.; Aihara, H.; Arinstein, K.; Aulchenko, V.; Aushev, T.; Bakich, A.M.; Balagura, V.; Bedny, I.; Bhardwaj, V.; et al. Observation of a Near-Threshold Enhancement in the e+e− → Λc+Λc- Cross Section Using Initial-State Radiation. Phys. Rev. Lett. 2000, 101, 172001. [Google Scholar] [CrossRef] [Green Version]
- Ablikim, M.; Achasov, M.N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F.F.; An, Q.; Bai, J.Z.; Bai, Y.; et al. Precision Measurement of the e+e− → Λc+Λ¯c- Cross Section Near Threshold. Phys. Rev. Lett. 2018, 120, 132001. [Google Scholar] [CrossRef] [Green Version]
- Raimondi, P. Status at Super B Effort. Talk Presented at the 2nd Workshop on Super B-Factory, LNF-INFN, Frascati, Italy. 2006. Available online: http://www.lnf.infn.it/conference/superb06/talks/raimondi1.ppt (accessed on 31 January 2022).
- Bogomyagkov, A. Possibilities of Crab Waist. Talk Presented at the 14th International Workshop on Tau Lepton Physics, IHEP, Beijing, China. 2016. Available online: https://indico.ihep.ac.cn/event/5221/session/7/contribution/29/material/slides/0.pdf (accessed on 31 January 2022).
- Cao, P.; Chen, H.F.; Chen, M.M.; Dai, H.L.; Heng, Y.K.; Ji, X.L.; Jiang, X.S.; Li, C.; Li, X.; Liu, B.S.; et al. Design and construction of the new BESIII endcap Time-of-Flight system with MRPC Technology. Nucl. Inst. Methods Phys. Res. A 2020, 953, 163053. [Google Scholar] [CrossRef]
- Dong, M.Y. The BESIII and Its Upgrade, 30 Years of BES Physics. In Proceedings of the Symposium on 30 Years of BES Physics, Institute of High Energy Physics, Beijing, China, 5–6 September 2019; pp. 169–175. [Google Scholar] [CrossRef]
- Dong, M.Y.; Xiu, Q.L.; Wu, L.H.; Wu, Z.; Qin, Z.H.; Shen, P.; An, F.F.; Ju, X.D.; Liu, Y.; Zhu, K.; et al. Aging effect in the BESIII drift chamber. Chin. Phys. C 2016, 40, 016001. [Google Scholar] [CrossRef] [Green Version]
- Amoroso, A.; Baldini Ferroli, R.; Balossino, I.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bortone, A.; Bugalho, R.; Calcaterra, A.; Cerioni, S.; et al. The CGEM-IT readout chain. JINST 2021, 16, P08065. [Google Scholar] [CrossRef]
- Xie, Y.J.; Qin, Z.H.; Ma, X.Y.; Zhang, J.; Wu, L.H.; Xie, W.; Dong, M.Y.; Dong, J.; Ji, X.L.; Jiang, X.S.; et al. Construction and cosmic-ray test of the new inner drift chamber for BESIII. Chin. Phys. C 2016, 40, 096003. [Google Scholar] [CrossRef]
- Cossio, F. A mixed-Signal ASIC for Time and Charge Measurements with GEM Detectors. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2019. Available online: http://hdl.handle.net/11583/2743335 (accessed on 2 March 2022).
- Sauli, F. GEM: A new concept for electron amplification in gas detectors. Nucl. Instrum. Methods Phys. Res. A 1997, 386, 2–3. [Google Scholar] [CrossRef]
- Bencivenni, G.; Branchini, P.; Ciambrone, P.; Czerwinski, E.; De Lucia, E.; Di Cicco, A.; Domenici, D.; Felici, G.; Fermani, P.; Morello, G. The cylindrical GEM detector of the KLOE-2 experiment. JINST 2017, 12, C07016. [Google Scholar] [CrossRef]
- Gramigna, S. A Cylindrical GEM Inner Tracker for the BESIII Experiment: From Construction to Electronic Noise Studies. Master’s Thesis, University of Ferrara, Ferrara, Italy, 2021. Available online: https://jinst.sissa.it/jinst/theses/2021_JINST_TH_004.pdf (accessed on 31 January 2022).
- Sauli, F. The gas electron multiplier (GEM): Operating principles and applications. Nucl. Instrum. Methods Phys. Res. A 2016, 805, 2–24. [Google Scholar] [CrossRef]
- Bachmann, S.; Bressan, A.; Capeans, M.; Deutel, M.; Kappler, S.; Ketzer, S.; Polouektov, A.; Ropelewski, L.; Sauli, F.; Schulte, E.; et al. Discharge studies and prevention in the gas electron multiplier (GEM). Nucl. Instrum. Methods Phys. Res. A 2002, 479, 294–308. [Google Scholar] [CrossRef] [Green Version]
- Sauli, F. Principles of Operation of Multiwire Proportional and Drift Chambers. CERN 1975–1976. Available online: https://cds.cern.ch/record/117989 (accessed on 31 January 2022).
- Ketzer, B.; Ehlers, J.; Friedrich, J.; Grube, B.; Kapples, S.; Konorov, I.; Paul, S.; Placci, A.; Ropelewski, L.; Sauli, F. A fast tracker for COMPASS based on the GEM. Nucl. Phys. B Proc. Suppl. 2003, 125, 368–373. [Google Scholar] [CrossRef]
- Alfonsi, M.; Bencivenni, G.; Bonivento, W.M.; Cardini, A.; de Simone, P.; Murtas, F.; Pinci, D.; Poli Lener, M.; Raspino, D.; Saitta, B. The triple-GEM detector for the M1R1 muon station at LHCb. In Proceedings of the IEEE Nuclear Science Symposium, Fajardo, PR, USA, 23–29 October 2005; Volume 2, pp. 811–815. [Google Scholar]
- Fenker, H.C.; Burkert, V.; Ent, R.; Baillie, N.; Evans, J.; Fersch, R.; Griffioen, K.; Bradshawm, P.; Bueltmann, S.; Dodge, G. BoNuS: Development and Use of a Radial TPC using Cylindrical GEMs. Nucl. Instrum. Methods. Phys. Res. A 2008, 592, 273–286. [Google Scholar] [CrossRef]
- Farinelli, R. Research and Development in Cylindrical Triple-GEM Detector with µTPC Readout for the BESIII Experiment. Ph.D. Thesis, University of Ferrara, Ferrara, Italy, 2019. Available online: https://jinst.sissa.it/jinst/theses/2019_JINST_TH_002.pdf (accessed on 31 January 2022).
- Alfonsi, M.; Baccaro, S.; Bencivenni, G.; Bonivento, W.; Cardini, A.; de Simone, P.; Murtas, F.; Pinci, D.; Lener, M.P.; Raspino, D.; et al. Studies of etching effects on triple-GEM detectors operated with CF4-based gas mixtures. IEEE Trans. Nucl. Sci. 2005, 52, 2872–2878. [Google Scholar] [CrossRef]
- Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Albrecht, M.; Ambrose, D.J.; Amoroso, A.; An, F.F.; An, Q.; Astorino, F.; et al. Conceptual Design Report—BESIII Cylindrical GEM Inner Tracker, Version 1.0.1. Internal Note 2014. Available online: http://www.lnf.infn.it/esperimenti/bes3/bes3_tdr_cgem.pdf (accessed on 31 January 2022).
- Balossino, I. Cylindrical GEMs Mechanical Structure’s Investigations and Improvements for the BESIII Experiment. Talk Presented at the Forum on Tracking Detector Mechanics. 2021. Available online: https://indico.cern.ch/event/1017981/contributions/4348788/attachments/2247229/3811723/BALOSSINO_BESIII_FoTDM2021.pdf (accessed on 31 January 2022).
- Duarte Pinto, S.; Villa, M.; Alfonsi, M.; Brock, I.; Croci, G.; David, E.; de Oliveira, R.; Ropelewski, L.; van Stenis, M. Progress on large area GEMs. J. Instrum. 2009, 4, P12009. [Google Scholar] [CrossRef] [Green Version]
- Balossino, I.; Alexeev, M.; Amoroso, A.; Bagnasco, S.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bortone, A.; Bianchi, F.; Calcaterra, A.; et al. Investigation and improvements of the mechanical structure of cylindrical GEMs for the BESIII experiment. arXiv 2020, arXiv:2005.06264. [Google Scholar] [CrossRef]
- Archilli, F.; Badoni, D.; Babusci, D.; Bencivenni, G.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Budano, A.; et al. Technical Design Report of the Inner Tracker for the KLOE-2 experiment. arXiv 2010, arXiv:1002.2572. [Google Scholar]
- Garzia, I.; Bettoni, D.; Cibinetto, G.; Fioravanti, E.; Santoro, V.; Savrie, M.; Carassiti, V.; Melchiorri, M.; Farinelli, R.; Rinchiuso, L.; et al. A Cylindrical GEM Detector with Analog Readout for the BESIII Experiment. In Proceedings of the 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014), Amsterdam, The Netherlands, 2–6 June 2014; p. 292. [Google Scholar]
- Mignone, M.; INFN Sezione di Torino, Turin, Italy. BES3 Front-End Board PCB. Personal communication, 2017. [Google Scholar]
- Da Rocha Rolo, M.D.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; et al. A custom readout electronics for the BESIII CGEM detector. JINST 2017, 12, 7–17. [Google Scholar] [CrossRef]
- Rivetti, A.; Alexeev, M.; Bugalho, R.; Cossio, F.; Da Rocha Rolo, M.D.; Di Francesco, A.; Greco, M.; Cheng, W.; Maggiora, M.; Marcello, S.; et al. TIGER: A front-end ASIC for timing and energy measurements with radiation detectors. Nucl. Instrum. Methods Phys. Res. A 2019, 924, 181–186. [Google Scholar] [CrossRef] [Green Version]
- De Geronimo, G.; Fried, J.; Li, S.; Metcalfe, J.; Nambiar, N.; Vernon, E.; Polychronakos, V. VMM1—An ASIC for Micropattern Detectors. IEEE Trans. Nucl. Sci. 2013, 60, 2314–2321. [Google Scholar] [CrossRef]
- Rivetti, A. CMOS: Front-End Electronics for Radiation Sensors, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 196–197. [Google Scholar] [CrossRef]
- De Geronimo, G.; Fried, J.; O’Connor, P.; Radeka, V.; Smith, G.; Thorn, C.; Yu, B. Front-end ASIC for a GEM based time projection chamber. IEEE Trans. Nucl. Sci. 2004, 51, 1312–1317. [Google Scholar] [CrossRef]
- Fairstein, E. Linear unipolar pulse-shaping networks: Current technology. IEEE Trans. Nucl. Sci. 1990, 37, 382–397. [Google Scholar] [CrossRef]
- De Geronimo, G.; O’Connor, P.; Grosholz, J. A CMOS baseline holder (BLH) for readout ASICs. IEEE Trans. Nucl. Sci. 2000, 1, 818–822. [Google Scholar] [CrossRef] [Green Version]
- Martoiu, S.; Rivetti, A.; Ceccucci, A.; Cotta Ramusino, A.; Chiozzi, S.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; et al. A pixel front-end ASIC in 0.13 µm CMOS for the NA62 experiment with on pixel 100 ps Time-to-Digital Converter. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009), Orlando, FL, USA, 24 October–1 November 2009; pp. 55–60. [Google Scholar] [CrossRef]
- Dellacasa, G.; Garbolino, S.; Marchetto, F.; Martoiu, S.; Mazza, G.; Rivetti, A.; Wheadon, R. A 130 nm ASIC prototype for the NA62 Gigatracker readout. Nucl. Instrum. Methods Phys. Res. A 2011, 650, 115–119. [Google Scholar] [CrossRef]
- Da Rocha Rolo, M.D.; Bugalho, R.; Gonçalves, F.; Mazza, G.; Rivetti, A.; Silva, J.; Silva, R.; Varela, J. TOFPET ASIC for PET applications. JINST 2013, 8, C02050. [Google Scholar] [CrossRef]
- Di Francesco, A.; Bugalho, R.; Oliveira, L.; Pacher, L.; Rivetti, A.; Da Rocha Rolo, M.D.; Silva, J.; Silva, R.; Varela, J. TOFPET2: A high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications. JINST 2016, 11, C03042. [Google Scholar] [CrossRef]
- Riceputi, E.; Gaioni, L.; Manghisoni, M.; Re, V.; Dinapoli, R.; Mozzanica, A. Total ionizing dose effects on CMOS devices in a 110 nm technology. In Proceedings of the 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME 2017), Giardini Naxos, Italy, 12–15 June 2017; pp. 241–244. [Google Scholar] [CrossRef]
- Cossio, F.; Alexeev, M.; Bugalho, R.; Chai, J.; Cheng, W.; Da Rocha Rolo, M.D.; Di Francesco, A.; Greco, M.; Leng, C.; Li, H.; et al. Design and characterization of the readout ASIC for the BESIII CGEM detector. In Proceedings of the Topical Workshop on Electronics for Particle Physics (TWEPP-17), Santa Cruz, CA, USA, 11–14 September 2017; p. 044. [Google Scholar] [CrossRef] [Green Version]
- Cossio, F.; Alexeev, M.; Bugalho, R.; Chai, J.; Cheng, W.; Da Rocha Rolo, M.D.; Di Francesco, A.; Greco, M.; Leng, C.; Li, H.; et al. Design and performance of the TIGER front-end ASIC for the BESIII Cylindrical Gas Electron Multiplier detector. In Proceedings of the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2017), Atlanta, GA, USA, 21–28 October 2017; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Altera Arria V FPGA Device Datasheet. Available online: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-v/av_51002.pdf (accessed on 31 January 2022).
- Liu, Z.; Gong, W.; Guo, Y.; Jin, D.; Li, L.; Lu, Y.; Qiao, Q.; Wang, K.; Wei, S.; Xu, H.; et al. Trigger System of BESIII. In Proceedings of the 2007 15th IEEE-NPSS Real-Time Conference, Batavia, IL, USA, 29 April–4 May 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Branchini, P.; Budano, A.; Balla, A.; Beretta, M.; Ciambrone, P.; De Lucia, E.; D’Uffizi, A.; Marciniewski, P. Front-end DAQ strategy and implementation for the KLOE-2 experiment. JINST 2013, 8, T04004. [Google Scholar] [CrossRef]
- Marciniewski, P.; Plucinski, P.; Fransson, K.; Heijkenskojld, L.; Kupsc, A.; Zlomanczuk, J.; Wolke, M.; Calen, H.; Johansson, T.; Hoistad, B.; et al. A Trigger System based on fast sampling ADCs—Implementation and tests. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference (NSS 2011), Valencia, Spain, 23–29 October 2011; pp. 38–42. [Google Scholar]
- Li, W.; Liu, H.; Deng, Z.; He, K.; He, M.; Ji, X.; Jiang, L.; Li, H.; Liu, C.; Ma, Q.; et al. The Offline Software for the BESIII Experiment. In Proceedings of the International Conference on Computing in High Energy and Nuclear Physics (CHEP2006), Mumbai, India, 13–17 February 2006; Available online: https://indico.cern.ch/event/408139/contributions/979815/attachments/815741/1117758/CHEP06-Weidong_Li.pdf (accessed on 31 January 2022).
- Barrand, G.; Belyaen, I.; Binko, P.; Cattaneo, M.; Chytracek, R.; Corti, G.; Frank, M.; Gracia, G.; Harvey, J.; van Herwijnen, E.; et al. GAUDI—A software architecture and framework for building HEP data processing applications. Comput. Phys. Commun. 2001, 140, 45–55. [Google Scholar] [CrossRef] [Green Version]
- CERN Program Library. Available online: https://cernlib.web.cern.ch/cernlib/ (accessed on 31 January 2022).
- CLHEP—A Class Library for High Energy Physics Website. Available online: https://proj-clhep.web.cern.ch/proj-clhep/ (accessed on 31 January 2022).
- ROOT Data Analysis Framework Website. Available online: http://root.cern.ch/ (accessed on 31 January 2022).
- Agostineli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 250. [Google Scholar] [CrossRef] [Green Version]
- Arnault, C. CMT: A Software Configuration Management Tool. In Proceedings of the International Conference on Computing in High Energy and Nuclear Physics (CHEP2000), Padova, Italy, 7–11 February 2000; Available online: https://chep2000.pd.infn.it/short_p/spa_f033.pdf (accessed on 31 January 2022).
- CVS Website. Available online: http://cvs.nongnu.org/ (accessed on 31 January 2022).
- MySQL Website. Available online: https://www.mysql.com/ (accessed on 31 January 2022).
- Key4HEP Github Website. Available online: https://key4hep.github.io/key4hep-doc/ (accessed on 31 January 2022).
- Guo, Y.; Wang, L.L.; Ju, X.D.; Wu, L.H.; Xiu, Q.L.; Wang, H.X.; Dong, M.Y.; Hu, J.R.; Li, W.D.; Li, W.G.; et al. Study of cluster reconstruction and track fitting algorithms for CGEM-IT at BESIII. Chin. Phys. C 2016, 40, 016201. [Google Scholar] [CrossRef] [Green Version]
- Bonivento, W.; Cardini, A.; Bencivenni, G.; Murtas, F.; Pinci, D. A Complete Simulation of a Triple-GEM Detector. IEEE Trans. Nucl. Sci. 2002, 49, 4. [Google Scholar] [CrossRef] [Green Version]
- Veenhof, R. GARFIELD, recent developments. Nucl. Instrm. Meth. A 1998, 419, 726–730. [Google Scholar] [CrossRef]
- Smirnov, I.B. Modeling of ionization produced by fast charged particles in gases. Nucl. Instrm. Meth. A 2005, 554, 474. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Miao, N.N.; Wu, L.H.; Wang, L.L.; Sun, T.; Huang, Z.; Mitchell, R.; Li, W.G.; Liu, H.M.; Lou, X.C.; et al. Digitization modeling of a CGEM detector based on Garfield++ simulation. Radiat. Detect. Technol. Methods 2020, 4, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Farinelli, R.; Alexeev, M.; Amoroso, A.; Bagnasco, S.; Baldini Ferroli, R.; Balossino, I.; Bertani, M.; Bettoni, D.; Bortone, A.; Bianchi, F.; et al. GTS—Garfield-based Triple-GEM Simulator. In Proceedings of the International Conference on Computing in High Energy and Nuclear Physics (CHEP2019), Adelaide, Australia, 4–8 November 2019; Volume 245. [Google Scholar]
- Lavezzi, L.; Alexeev, M.; Amoroso, A.; Bagnasco, S.; Baldini Ferroli, R.; Balossino, I.; Bertani, M.; Bettoni, D.; Bortone, A.; Bianchi, F.; et al. Standalone codes for simulation and reconstruction of a triple-GEM: GTS and GRAAL. In Proceedings of the Detection Systems and Techniques in Nuclear and Particle Physics (DeSyT2019), Messina, Italy, 11–13 September 2019. [Google Scholar]
- Ansys Website. Available online: https://www.ansys.com/ (accessed on 31 January 2022).
- Schlumbohm, H. Zur Statistik der Elektronenlawinen im ebenen Feld. III. Z. Phys. 1958, 151, 563–576. [Google Scholar] [CrossRef]
- Jones, L.L.; French, M.L.; Morrissey, Q.R.; Neviani, A.; Raymond, M.; Hall, G.; Moreira, P.; Cervelli, G. The APV25 Deep Submicron Readout Chip for CMS Detectors. In Proceedings of the 5th Conference on Electronics for LHC Experiments, Snowmass, CO, USA, 20–24 September 1999; pp. 162–166. [Google Scholar]
- Alexeev, M.; Amoroso, A.; Bagnasco, S.; Baldini Ferroli, R.; Balossino, I.; Bencivenni, G.; Bertani, M.; Bettoni, D.; Bortone, A.; Bianchi, F.; et al. Triple GEM performance in magnetic field. JINST 2019, 14, P08018. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.G.; Zang, S.L.; Li, W.G.; Mao, Z.P.; Bian, J.M.; Cao, G.F.; Cao, X.X.; Chen, S.J.; Deng, Z.Y.; Fu, C.D.; et al. Track reconstruction using the TSF method for the BESIII main drift chamber. Chin. Phys. C 2008, 32, 565. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Liu, H.M.; Yuan, Y.; Zhang, X.Y.; Dong, L.Y.; Huang, Z.; Ji, X.B.; Li, H.B.; Li, W.G.; et al. Low transverse momentum track reconstruction based on the Hough transform for the BESIII drift chamber. Radiat. Detect. Technol. Methods 2018, 2, 20. [Google Scholar] [CrossRef]
- Sun, X.H.; Wang, L.L.; Wu, L.H.; Ju, X.D.; Xiu, Q.L.; Dong, L.Y.; Dong, M.Y.; Li, W.D.; Liu, H.M.; Liu, H.M. Track segment finding with CGEM-IT and matching to outer drift chamber tracks in the BESIII detector. Chin. Phys. C 2016, 40, 096203. [Google Scholar] [CrossRef]
- Huang, Z. Global Track Finding with a Cylindrical GEM and a Drift Chamber. In Proceedings of the 24th International Conference on Computing in High-Energy and Nuclear Physics (CHEP2019), Adelaide, Australia, 4–8 November 2019; Available online: https://indico.cern.ch/event/773049/contributions/3474780/attachments/1937588/3211997/Global_Track_Finding_with_a_Cylindrical-GEM_and_a_Drift_Chamberposter.pdf (accessed on 31 January 2022).
- Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962. [Google Scholar]
- SPS Website. Available online: https://sba.web.cern.ch/sba/BeamsAndAreas/H4/H4_presentation.html (accessed on 31 January 2022).
- Collaboration RD51 Website. Available online: https://rd51-public.web.cern.ch/ (accessed on 31 January 2022).
- Dalla Torre, S.; Oliveri, E.; Ropelewski, L.; Titov, M. R&D proposal RD51 extension beyond 2018. arXiv 2018, arXiv:1806.09955. [Google Scholar]
- Rosenthal, M.; Charitonidis, N.; Chatzidaki, P.; Margraf, R.; Wilkens, H.; Bergsma, F.; Pierre-Ange, G. Magnetic Field Measurements of the GOLIATH Magnet in EHN1. 2018. Available online: http://cds.cern.ch/record/2310483/files/CERN-ACC-NOTE-2018-0028.pdf (accessed on 31 January 2022).
- Farinelli, R.; Amoroso, A.; Baldini Ferroli, R.; Balossino, I.; Bertani, M.; Bettoni, D.; Bortone, A.; Calcaterra, A.; Cerioni, S.; Cheng, W.; et al. Preliminary results from the cosmic data taking of the BESIII cylindrical GEM detectors. In Proceedings of the International Conference on Instrumentation for Colliding Beam Physics (INSTR2020), Novosibirsk, Russia, 24–28 February 2020. [Google Scholar]
- Farinelli, R.; Alexeev, M.; Amoroso, A.; Bagnasco, S.; Baldini Ferroli, R.; Balossino, I.; Bertani, M.; Bettoni, D.; Bortone, A.; Bianchi, F.; et al. GRAAL: Gem Reconstruction and Analysis Library. In Proceedings of the International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2019), Saas-Fee, Switzerland, 11–15 March 2019. [Google Scholar]
- Garzia, I.; Alexeev, A.A.; Baldini Ferroli, R.; Balossino, I.; Bertani, M.; Bettoni, D.; Bortone, A.; Calcaterra, A.; Cerioni, S.; Capodiferro, M.; et al. GEM detector performance with innovative micro-TPC readout in high magnetic field. In Proceedings of the Advancements in Nuclear Instrumentation Measurement Methods and Their Applications (ANIMMA 2017), Liege, Belgium, 19–23 June 2017; p. 170. [Google Scholar]
- Farinelli, R.; Amoroso, A.; Baldini Ferroli, R.; Balossino, I.; Bertani, M.; Bettoni, D.; Bortone, A.; Calcaterra, A.; Cerioni, S.; Cheng, W.; et al. A Cylindrical GEM Inner Tracker for the BESIII Experiment At IHEP. In Proceedings of the International Conference on Technology and Instrumentation in Particle Physics (TIPP2017), Beijing, China, 22–26 May 2017; Springer: Singapore, 2018; Volume 213, pp. 116–119. [Google Scholar]
- National Instruments Corp. LabVIEW Documentation. Available online: https://www.ni.com/it-it/support/documentation.html (accessed on 31 January 2022).
- Arduino Documentation. Available online: https://docs.arduino.cc/ (accessed on 31 January 2022).
- InfluxData Inc. InfluxDB Documentation. Available online: https://docs.influxdata.com/influxdb/v2.1/ (accessed on 31 January 2022).
- Grafana Labs. Grafana Documentation. Available online: https://grafana.com/docs/grafana/latest/ (accessed on 31 January 2022).
Layer | Inner Diameter | Active Area Length | Strips Stereo Angle |
---|---|---|---|
Inner | 153.8 mm | 532 mm | 46.7 |
Middle | 242.8 mm | 690 mm | −31.0 |
Outer | 323.8 mm | 847 mm | 32.9 |
Characteristic | Goal |
---|---|
Angular Coverage | |
Material Budget | ≤1.5% |
Rate Capability | |
≤130 µm | |
≤1 mm | |
dp/p @ 1GeV/c |
Parameters | Value |
---|---|
Number of channels | 64 |
Clock frequency | 160–200 MHz |
Input capacitance | Up to 100 pF |
Input dynamic range | 2–50 fC |
Front-end gain | 12 mV/fC |
Non-linearity | <2% |
ENC | <2000 e |
TDC time binning | 50 ps |
Maximum event rate | 60 kHz/ch |
Readout mode | Trigger-less |
Charge collectiontTime | 60 ns |
Time resolution | <5 ns |
Power consumption | <12 mW/ch |
Technology | CMOS 110 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balossino, I.; Cossio, F.; Farinelli, R.; Lavezzi, L. The CGEM-IT: An Upgrade for the BESIII Experiment. Symmetry 2022, 14, 905. https://doi.org/10.3390/sym14050905
Balossino I, Cossio F, Farinelli R, Lavezzi L. The CGEM-IT: An Upgrade for the BESIII Experiment. Symmetry. 2022; 14(5):905. https://doi.org/10.3390/sym14050905
Chicago/Turabian StyleBalossino, Ilaria, Fabio Cossio, Riccardo Farinelli, and Lia Lavezzi. 2022. "The CGEM-IT: An Upgrade for the BESIII Experiment" Symmetry 14, no. 5: 905. https://doi.org/10.3390/sym14050905
APA StyleBalossino, I., Cossio, F., Farinelli, R., & Lavezzi, L. (2022). The CGEM-IT: An Upgrade for the BESIII Experiment. Symmetry, 14(5), 905. https://doi.org/10.3390/sym14050905