A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators
Abstract
:1. Introduction
2. Basic Preliminaries
3. Methodology
3.1. Case I
3.2. Case II
4. Convergence Analysis
5. Numerical Examples
5.1. Implementing
5.2. Implementing
5.3. Applying
5.4. Applying
5.5. Applying
5.6. Applying
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Guvenc, Z.B.; Tenreiro Machado, J.A. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Caputo, M. Elasticita e Dissipazione; Zanichelli: Bologna, Italy, 1969. [Google Scholar]
- Riemann, G.F.B. Versuch Einer Allgemeinen Auffassung der Integration und Differentiation; Gesammelte Mathematische Werke: Leipzig, Germany, 1896. [Google Scholar]
- Liouville, J. Memoire sur quelques questions de geometrie et de mecanique, et sur un nouveaugenre de calcul pour resoudre ces questions. J. Ecole Polytech. 1832, 13, 1–69. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Li, Y.; Liub, F.; Turner, I.W.; Li, T. Time-fractional diffusion equation for signal smoothing. Appl. Math Comput. 2018, 326, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math Anal. Appl. 2007, 332, 709–726. [Google Scholar] [CrossRef] [Green Version]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Prakasha, D.G.; Veeresha, P.; Baskonus, H.M. Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative. Eur. Phys. J. Plus. 2019, 134, 1–11. [Google Scholar] [CrossRef]
- Shah, N.; Alyousef, H.; El-Tantawy, S.; Shah, R.; Chung, J. Analytical Investigation of Fractional-Order Korteweg–De-Vries-Type Equations under Atangana–Baleanu–Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Zidan, A.; Yao, S.; Shah, R.; Inc, M. The Comparative Study for Solving Fractional-Order Fornberg–Whitham Equation via ρ-Laplace Transform. Symmetry 2021, 13, 784. [Google Scholar] [CrossRef]
- Baleanu, D.; Wu, G.C.; Zeng, S.D. Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solitons Fractals 2017, 102, 99–105. [Google Scholar] [CrossRef]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Physica A 2000, 284, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Drapaka, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elst. 2012, 107, 105–123. [Google Scholar] [CrossRef]
- Cruz-Duarte, J.M.; Rosales-Garcia, J.; Correa-Cely, C.R.; Garcia-Perez, A.; Avina-Cervantes, J.G. A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications. Commun. Nonlinear Sci. Numer. Simul. 2018, 61, 138–148. [Google Scholar] [CrossRef]
- Singh, B.K. A novel approach for numeric study of 2D biological population model. Cogent Math. 2016, 3, 1–15. [Google Scholar] [CrossRef]
- El-Sayed, A.; Hamdallah, E.; Ba-Ali, M. Qualitative Study for a Delay Quadratic Functional Integro-Differential Equation of Arbitrary (Fractional) Orders. Symmetry 2022, 14, 784. [Google Scholar] [CrossRef]
- Keskin, Y.; Oturanc, G. Reduced differential transform method for partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 741–750. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177, 488–494. [Google Scholar] [CrossRef]
- Wu, G.C. A fractional variational iteration method for solving fractional nonlinear differential equations. Comput. Math. Appl. 2011, 61, 2186–2190. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Khan, A.; Kumam, P.; Baleanu, D.; Arif, M. An approximate analytical solution of the Navier-Stokes equations within Caputo operator and Elzaki transform decomposition method. Adv. Differ. Equ. 2020, 2011, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Nonlaopon, K.; Alsharif, A.M.; Zidan, A.M.; Khan, A.; Hamed, Y.S.; Shah, R. Numerical investigation of fractional-order Swif-Hohenberg equations via a Novel transform. Symmetry 2021, 13, 1263. [Google Scholar] [CrossRef]
- Khan, H.; Khan, A.; Al-Qurashi, M.; Shah, R.; Baleanu, D. Modified modelling for heat like equations within Caputo operator. Energies 2020, 13, 2002. [Google Scholar] [CrossRef]
- Aljahdaly, N.; Agarwal, R.; Shah, R.; Botmart, T. Analysis of the Time Fractional-Order Coupled Burgers Equations with Non-Singular Kernel Operators. Mathematics 2021, 9, 2326. [Google Scholar] [CrossRef]
- Qin, Y.; Khan, A.; Ali, I.; Al Qurashi, M.; Khan, H.; Shah, R.; Baleanu, D. An efficient analytical approach for the solution of certain fractional-order dynamical systems. Energies 2020, 13, 2725. [Google Scholar] [CrossRef]
- Alaoui, M.K.; Fayyaz, R.; Khan, A.; Shah, R.; Abdo, M.S. Analytical Investigation of Noyes-Field Model for Time-Fractional Belousov-Zhabotinsky Reaction. Complexity 2021, 2021, 3248376. [Google Scholar] [CrossRef]
- Kaup, D.J. On the inverse scattering for cubic eigenvalue problems of the class equations. Stud. Appl. Math. 1980, 62, 183–195. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. A super Korteweg-de-Vries equations: An integrable system. Phys. Lett. A 1994, 102, 213–218. [Google Scholar] [CrossRef]
- Fan, E. Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics. Chaos Solitons Fractals 2003, 16, 819–839. [Google Scholar] [CrossRef]
- Inc, M. On numerical soliton solution of the Kaup-Kupershmidt equation and convergence analysis of the decomposition method. Appl. Math. Comput. 2006, 172, 72–85. [Google Scholar]
- Rashid, S.; Khalid, A.; Sultana, S.; Hammouch, Z.; Shah, R.; Alsharif, A. A Novel Analytical View of Time-Fractional Korteweg-De Vries Equations via a New Integral Transform. Symmetry 2021, 13, 1254. [Google Scholar] [CrossRef]
- Tam, H.W.; Hu, X.B. Two integrable differential-difference equations exhibiting soliton solutions of the Kaup-Kupershimdt equation type. Phys. Lett. A 2000, 272, 174–183. [Google Scholar] [CrossRef]
- Zhou, M.X.; Kanth, A.S.V.; Aruna, K.; Raghavendar, K.; Rezazadeh, H.; Inc, M.; Aly, A.A. Numerical Solutions of Time Fractional Zakharov-Kuznetsov Equation via Natural Transform Decomposition Method with Nonsingular Kernel Derivatives. J. Funct. Spaces 2021, 2021, 9884027. [Google Scholar] [CrossRef]
- Adomian, G. A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 1984, 102, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Khan, H.; Baleanu, D.; Kumam, P.; Arif, M. The analytical investigation of time-fractional multi-dimensional Navier–Stokes equation. Alex. Eng. J. 2020, 59, 2941–2956. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Malagi, N.S.; Veeresha, P.; Prasannakumara, B.C. An efficient computational technique for time-fractional Kaup-Kupershmidt equation. Numer. Methods Partial. Differ. Equ. 2021, 37, 1299–1316. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ray, S.S. The comparison of two reliable methods for accurate solution of time-fractional Kaup-Kupershmidt equation arising in capillary gravity waves. Math. Methods Appl. Sci. 2016, 39, 583–592. [Google Scholar] [CrossRef]
0.2 | 7.7794000000 × 10 | 5.9046000000 × 10 | 3.1881000000 × 10 | 1.5379000000 × 10 | 1.5379000000 × 10 | |
0.4 | 1.5668400000 × 10 | 1.1893800000 × 10 | 6.4232000000 × 10 | 3.0990000000 × 10 | 3.0990000000 × 10 | |
0.1 | 0.6 | 2.3529200000 × 10 | 1.7864200000 × 10 | 9.6509000000 × 10 | 4.6575000000 × 10 | 4.6575000000 × 10 |
0.8 | 3.1347800000 × 10 | 2.3807000000 × 10 | 1.2867500000 × 10 | 6.2123000000 × 10 | 6.2123000000 × 10 | |
1 | 3.9110400000 × 10 | 2.9712500000 × 10 | 1.6069300000 × 10 | 7.7622000000 × 10 | 7.7622000000 × 10 | |
0.2 | 1.5316700000 × 10 | 1.1624400000 × 10 | 6.2757000000 × 10 | 3.0269000000 × 10 | 3.0269000000 × 10 | |
0.4 | 3.1100100000 × 10 | 2.3605500000 × 10 | 1.2746600000 × 10 | 6.1491000000 × 10 | 6.1491000000 × 10 | |
0.2 | 0.6 | 4.6827700000 × 10 | 3.5549900000 × 10 | 1.9202900000 × 10 | 9.2664000000 × 10 | 9.2664000000 × 10 |
0.8 | 6.2471400000 × 10 | 4.7438600000 × 10 | 2.5637000000 × 10 | 1.2376100000 × 10 | 1.2376100000 × 10 | |
1 | 7.8003300000 × 10 | 5.9253400000 × 10 | 3.2041800000 × 10 | 1.5476200000 × 10 | 1.5476200000 × 10 | |
0.2 | 2.2606900000 × 10 | 1.7156700000 × 10 | 9.2620000000 × 10 | 4.4671000000 × 10 | 4.4671000000 × 10 | |
0.4 | 4.6285600000 × 10 | 3.5130300000 × 10 | 1.8968900000 × 10 | 9.1506000000 × 10 | 9.1506000000 × 10 | |
0.3 | 0.6 | 6.9881100000 × 10 | 5.3049100000 × 10 | 2.8654200000 × 10 | 1.3826500000 × 10 | 1.3826500000 × 10 |
0.8 | 9.3351200000 × 10 | 7.0884900000 × 10 | 3.8306300000 × 10 | 1.8491500000 × 10 | 1.8491500000 × 10 | |
1 | 1.1665440000 × 10 | 8.8610300000 × 10 | 4.7914600000 × 10 | 2.3141700000 × 10 | 2.3141700000 × 10 | |
0.2 | 2.9650200000 × 10 | 2.2501400000 × 10 | 1.2147100000 × 10 | 5.8586000000 × 10 | 5.8586000000 × 10 | |
0.4 | 6.1224700000 × 10 | 4.6468100000 × 10 | 2.5090400000 × 10 | 1.2103200000 × 10 | 1.2103200000 × 10 | |
0.4 | 0.6 | 9.2689100000 × 10 | 7.0362200000 × 10 | 3.8004700000 × 10 | 1.8338100000 × 10 | 1.8338100000 × 10 |
0.8 | 1.2398730000 × 10 | 9.4146100000 × 10 | 5.0875300000 × 10 | 2.4558200000 × 10 | 2.4558200000 × 10 | |
1 | 1.5506360000 × 10 | 1.1778340000 × 10 | 6.3687500000 × 10 | 3.0758800000 × 10 | 3.0758800000 × 10 | |
0.2 | 3.6446500000 × 10 | 2.7658900000 × 10 | 1.4931100000 × 10 | 7.2012000000 × 10 | 7.2012000000 × 10 | |
0.4 | 7.5917400000 × 10 | 5.7618900000 × 10 | 3.1110700000 × 10 | 1.5007100000 × 10 | 1.5007100000 × 10 | |
0.5 | 0.6 | 1.1525180000 × 10 | 8.7488900000 × 10 | 4.7254400000 × 10 | 2.2800900000 × 10 | 2.2800900000 × 10 |
0.8 | 1.5437950000 × 10 | 1.1722200000 × 10 | 6.3343900000 × 10 | 3.0576500000 × 10 | 3.0576500000 × 10 | |
1 | 1.9323090000 × 10 | 1.4677220000 × 10 | 7.9360600000 × 10 | 3.8327700000 × 10 | 3.8327700000 × 10 |
0.1 | 3.5268 × 10 | 3.4968 × 10 | 3.1482 × 10 | 7.5000000000 × 10 | 7.5000000000 × 10 |
0.2 | 7.0308 × 10 | 7.2934 × 10 | 6.3101 × 10 | 1.5400000000 × 10 | 1.5400000000 × 10 |
0.3 | 1.0532 × 10 | 2.6793 × 10 | 9.4682 × 10 | 2.3200000000 × 10 | 2.3200000000 × 10 |
0.4 | 1.4028 × 10 | 5.8103 × 10 | 1.2620 × 10 | 3.1000000000 × 10 | 3.1000000000 × 10 |
0.5 | 1.7520 × 10 | 1.0061 × 10 | 1.5765 × 10 | 3.8800000000 × 10 | 3.8800000000 × 10 |
0.1 | 6.7734 × 10 | 6.7141 × 10 | 6.0478 × 10 | 1.4700000000 × 10 | 1.4700000000 × 10 |
0.2 | 1.3533 × 10 | 7.2899 × 10 | 1.2165 × 10 | 3.0200000000 × 10 | 3.0200000000 × 10 |
0.3 | 2.0287 × 10 | 2.6785 × 10 | 1.8276 × 10 | 4.5900000000 × 10 | 4.5900000000 × 10 |
0.4 | 2.7033 × 10 | 5.8094 × 10 | 2.4376 × 10 | 6.1500000000 × 10 | 6.1500000000 × 10 |
0.5 | 3.3768 × 10 | 1.0060 × 10 | 3.0461 × 10 | 7.7100000000 × 10 | 7.7100000000 × 10 |
0.1 | 1.2348 × 10 | 1.2175 × 10 | 1.0979 × 10 | 2.1300000000 × 10 | 2.1300000000 × 10 |
0.2 | 2.4789 × 10 | 7.2836 × 10 | 2.2262 × 10 | 1.5400000000 × 10 | 4.4700000000 × 10 |
0.3 | 3.7221 × 10 | 2.6773 × 10 | 3.3531 × 10 | 6.8100000000 × 10 | 6.8100000000 × 10 |
0.4 | 4.9638 × 10 | 5.8078 × 10 | 4.4781 × 10 | 9.1600000000 × 10 | 9.1600000000 × 10 |
0.5 | 6.2035 × 10 | 1.0058 × 10 | 5.6004 × 10 | 1.1500000000 × 10 | 1.1500000000 × 10 |
0.2 | 5.2120000000 × 10 | 3.6017600000 × 10 | 2.0943200000 × 10 | 6.4513000000 × 10 | 6.4513000000 × 10 | |
0.4 | 1.0384330000 × 10 | 7.1776700000 × 10 | 4.1757400000 × 10 | 1.2893800000 × 10 | 1.2893800000 × 10 | |
0.1 | 0.6 | 1.5474640000 × 10 | 1.0698980000 × 10 | 6.2282300000 × 10 | 1.9293900000 × 10 | 1.9293900000 × 10 |
0.8 | 2.0443500000 × 10 | 1.4139470000 × 10 | 8.2379300000 × 10 | 2.5631800000 × 10 | 2.5631800000 × 10 | |
1 | 2.5253100000 × 10 | 1.7473930000 × 10 | 1.0191440000 × 10 | 3.1886900000 × 10 | 3.1886900000 × 10 | |
0.2 | 5.8984400000 × 10 | 4.2773700000 × 10 | 2.7455400000 × 10 | 1.2876600000 × 10 | 1.2876600000 × 10 | |
0.4 | 1.1759660000 × 10 | 8.5314400000 × 10 | 5.4809200000 × 10 | 2.5761600000 × 10 | 2.5761600000 × 10 | |
0.2 | 0.6 | 1.7533840000 × 10 | 1.2726080000 × 10 | 8.1829600000 × 10 | 3.8562800000 × 10 | 3.8562800000 × 10 |
0.8 | 2.3179040000 × 10 | 1.6832640000 × 10 | 1.0835570000 × 10 | 5.1239700000 × 10 | 5.1239700000 × 10 | |
1 | 2.8655420000 × 10 | 2.0823970000 × 10 | 1.3423590000 × 10 | 6.3748800000 × 10 | 6.3748800000 × 10 | |
0.2 | 6.5642700000 × 10 | 4.9400400000 × 10 | 3.3914500000 × 10 | 1.9276800000 × 10 | 1.9276800000 × 10 | |
0.4 | 1.3096920000 × 10 | 9.8624000000 × 10 | 6.7785000000 × 10 | 3.8605500000 × 10 | 3.8605500000 × 10 | |
0.3 | 0.6 | 1.9537820000 × 10 | 1.4720680000 × 10 | 1.0127840000 × 10 | 5.7806700000 × 10 | 5.7806700000 × 10 |
0.8 | 2.5842940000 × 10 | 1.9484160000 × 10 | 1.3421460000 × 10 | 7.6821500000 × 10 | 7.6821500000 × 10 | |
1 | 3.1969960000 × 10 | 2.4123230000 × 10 | 1.6641870000 × 10 | 9.5586800000 × 10 | 9.5586800000 × 10 | |
0.2 | 7.2188300000 × 10 | 5.5944200000 × 10 | 4.0328700000 × 10 | 2.5652100000 × 10 | 2.5652100000 × 10 | |
0.4 | 1.4414910000 × 10 | 1.1180020000 × 10 | 8.0703200000 × 10 | 5.1423300000 × 10 | 5.1423300000 × 10 | |
0.4 | 0.6 | 2.1514870000 × 10 | 1.6697170000 × 10 | 1.2065920000 × 10 | 7.7025600000 × 10 | 7.7025600000 × 10 |
0.8 | 2.8472250000 × 10 | 2.2112730000 × 10 | 1.5999330000 × 10 | 1.0237930000 × 10 | 1.0237930000 × 10 | |
1 | 3.5242520000 × 10 | 2.7394880000 × 10 | 1.9850950000 × 10 | 1.2740070000 × 10 | 1.2740070000 × 10 | |
0.2 | 7.8654200000 × 10 | 6.2423400000 × 10 | 4.6702100000 × 10 | 3.2001400000 × 10 | 3.2001400000 × 10 | |
0.4 | 1.5720280000 × 10 | 1.2488040000 × 10 | 9.3572800000 × 10 | 6.4215100000 × 10 | 6.4215100000 × 10 | |
0.5 | 0.6 | 2.3474550000 × 10 | 1.8660800000 × 10 | 1.3998180000 × 10 | 9.6219500000 × 10 | 9.6219500000 × 10 |
0.8 | 3.1079660000 × 10 | 2.4725350000 × 10 | 1.8570540000 × 10 | 1.2791210000 × 10 | 1.2791210000 × 10 | |
1 | 3.8489010000 × 10 | 3.0647790000 × 10 | 2.3052760000 × 10 | 1.5918960000 × 10 | 1.5918960000 × 10 |
0.2 | 6.4600000000 × 10 | 4.8300000000 × 10 | 2.7900000000 × 10 | 6.7000000000 × 10 | 6.7000000000 × 10 | |
0.4 | 6.4300000000 × 10 | 4.8100000000 × 10 | 2.7700000000 × 10 | 6.6000000000 × 10 | 6.6000000000 × 10 | |
0.1 | 0.6 | 6.4400000000 × 10 | 4.8200000000 × 10 | 2.8000000000 × 10 | 6.9000000000 × 10 | 6.9000000000 × 10 |
0.8 | 6.4500000000 × 10 | 4.8400000000 × 10 | 2.8200000000 × 10 | 7.1000000000 × 10 | 7.1000000000 × 10 | |
1 | 6.4100000000 × 10 | 4.8000000000 × 10 | 2.7900000000 × 10 | 6.9000000000 × 10 | 6.9000000000 × 10 | |
0.2 | 6.7100000000 × 10 | 5.4000000000 × 10 | 3.5400000000 × 10 | 1.4300000000 × 10 | 1.4300000000 × 10 | |
0.4 | 6.6700000000 × 10 | 5.3700000000 × 10 | 3.5100000000 × 10 | 1.4000000000 × 10 | 1.4000000000 × 10 | |
0.2 | 0.6 | 6.5800000000 × 10 | 5.2800000000 × 10 | 3.4300000000 × 10 | 1.3300000000 × 10 | 1.3300000000 × 10 |
0.8 | 6.6300000000 × 10 | 5.3300000000 × 10 | 3.4900000000 × 10 | 1.4000000000 × 10 | 1.4000000000 × 10 | |
1 | 6.5700000000 × 10 | 5.2800000000 × 10 | 3.4400000000 × 10 | 1.3500000000 × 10 | 1.3500000000 × 10 | |
0.2 | 6.8100000000 × 10 | 5.7600000000 × 10 | 4.1200000000 × 10 | 2.1000000000 × 10 | 2.1000000000 × 10 | |
0.4 | 6.8400000000 × 10 | 5.8000000000 × 10 | 4.1700000000 × 10 | 2.1500000000 × 10 | 2.1500000000 × 10 | |
0.3 | 0.6 | 6.7400000000 × 10 | 5.7100000000 × 10 | 4.0700000000 × 10 | 2.0700000000 × 10 | 2.0700000000 × 10 |
0.8 | 6.7700000000 × 10 | 5.7400000000 × 10 | 4.1100000000 × 10 | 2.1100000000 × 10 | 2.1100000000 × 10 | |
1 | 6.6500000000 × 10 | 5.6200000000 × 10 | 4.0000000000 × 10 | 2.0000000000 × 10 | 2.0000000000 × 10 | |
0.2 | 6.9600000000 × 10 | 6.1600000000 × 10 | 4.7400000000 × 10 | 2.8700000000 × 10 | 2.8700000000 × 10 | |
0.4 | 6.8900000000 × 10 | 6.0900000000 × 10 | 4.6800000000 × 10 | 2.8100000000 × 10 | 2.8100000000 × 10 | |
0.4 | 0.6 | 6.8600000000 × 10 | 6.0600000000 × 10 | 4.6500000000 × 10 | 2.7900000000 × 10 | 2.7900000000 × 10 |
0.8 | 6.8900000000 × 10 | 6.0900000000 × 10 | 4.6900000000 × 10 | 2.8300000000 × 10 | 2.8300000000 × 10 | |
1 | 6.7700000000 × 10 | 5.9700000000 × 10 | 4.5700000000 × 10 | 2.7200000000 × 10 | 2.7200000000 × 10 | |
0.2 | 6.9800000000 × 10 | 6.3800000000 × 10 | 5.2000000000 × 10 | 3.5100000000 × 10 | 3.5100000000 × 10 | |
0.4 | 7.0100000000 × 10 | 6.4200000000 × 10 | 5.2400000000 × 10 | 3.5600000000 × 10 | 3.5600000000 × 10 | |
0.5 | 0.6 | 6.9700000000 × 10 | 6.3800000000 × 10 | 5.2100000000 × 10 | 3.5300000000 × 10 | 3.5300000000 × 10 |
0.8 | 6.9300000000 × 10 | 6.3400000000 × 10 | 5.1700000000 × 10 | 3.4900000000 × 10 | 3.4900000000 × 10 | |
1 | 6.9000000000 × 10 | 6.3100000000 × 10 | 5.1500000000 × 10 | 3.4700000000 × 10 | 3.4700000000 × 10 |
1 | 7.0832 × 10 | 2.0000000000 × 10 | 2.0000000000 × 10 | |
2 | 4.4031 × 10 | 1.0000000000 × 10 | 1.0000000000 × 10 | |
0.25 | 3 | 1.1304 × 10 | 1.0000000000 × 10 | 1.0000000000 × 10 |
4 | 1.6642 × 10 | 1.0000000000 × 10 | 1.0000000000 × 10 | |
5 | 3.3639 × 10 | 1.0000000000 × 10 | 1.0000000000 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.-D.; Shah, R.; Khan, A. A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators. Symmetry 2022, 14, 986. https://doi.org/10.3390/sym14050986
Shah NA, Hamed YS, Abualnaja KM, Chung J-D, Shah R, Khan A. A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators. Symmetry. 2022; 14(5):986. https://doi.org/10.3390/sym14050986
Chicago/Turabian StyleShah, Nehad Ali, Yasser S. Hamed, Khadijah M. Abualnaja, Jae-Dong Chung, Rasool Shah, and Adnan Khan. 2022. "A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators" Symmetry 14, no. 5: 986. https://doi.org/10.3390/sym14050986
APA StyleShah, N. A., Hamed, Y. S., Abualnaja, K. M., Chung, J. -D., Shah, R., & Khan, A. (2022). A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators. Symmetry, 14(5), 986. https://doi.org/10.3390/sym14050986