Nuclear Mass Predictions of the Relativistic Density Functional Theory with the Kernel Ridge Regression and the Application to r-Process Simulations
Abstract
:1. Introduction
2. Theoretical Framework
3. Numerical Details
4. Results and Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lunney, D.; Pearson, J.M.; Thibault, C. Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 2003, 75, 1021–1082. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef] [Green Version]
- Mumpower, M.; Surman, R.; McLaughlin, G.; Aprahamian, A. The impact of individual nuclear properties on r-process nucleosynthesis. Prog. Part. Nucl. Phys. 2016, 86, 86–126. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. The AME2020 atomic mass evaluation. Chin. Phys. C 2021, 45, 030003. [Google Scholar] [CrossRef]
- Mumpower, M.R.; Surman, R.; Fang, D.L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A. Impact of individual nuclear masses on r-process abundances. Phys. Rev. C 2015, 92, 035807. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.F.; Wu, X.H.; Zhao, P.W. Sensitivity Study of r-process Abundances to Nuclear Masses. Astrophys. J. 2021, 915, 29. [Google Scholar] [CrossRef]
- Geng, L.S.; Toki, H.; Meng, J. Masses, deformations and charge radii—Nuclear ground-state properties in the relativistic mean field model. Prog. Theor. Phys. 2005, 113, 785–800. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.W.; Lim, Y.; Zhao, P.W.; Liang, H.Z.; Qu, X.Y.; Chen, Y.; Liu, H.; Zhang, L.F.; Zhang, S.Q.; Kim, Y.; et al. The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory. Atom. Data Nucl. Data Tables 2018, 121, 1–215. [Google Scholar] [CrossRef] [Green Version]
- Goriely, S.; Chamel, N.; Pearson, J.M. Skyrme-Hartree-Fock-Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy Threshold with Microscopically Deduced Pairing. Phys. Rev. Lett. 2009, 102, 152503. [Google Scholar] [CrossRef] [Green Version]
- Erler, J.; Birge, N.; Kortelainen, M.; Nazarewicz, W.; Olsen, E.; Perhac, A.M.; Stoitsov, M. The limits of the nuclear landscape. Nature 2012, 486, 509–512. [Google Scholar] [CrossRef]
- Afanasjev, A.; Agbemava, S.; Ray, D.; Ring, P. Nuclear landscape in covariant density functional theory. Phys. Lett. B 2013, 726, 680–684. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.L.; Wang, Y.K.; Zhao, P.W.; Li, Z.P. Nuclear landscape in a mapped collective Hamiltonian from covariant density functional theory. Phys. Rev. C 2021, 104, 054312. [Google Scholar] [CrossRef]
- Zhang, K.; Cheoun, M.K.; Choi, Y.B.; Chong, P.S.; Dong, J.; Dong, Z.; Du, X.; Geng, L.; Ha, E.; He, X.T.; et al. Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, I: Even-even nuclei. Atom. Data Nucl. Data Tables 2022, 144, 101488. [Google Scholar] [CrossRef]
- Meng, J. Relativistic Density Functional for Nuclear Structure; World Scientific: Singapore, 2016. [Google Scholar]
- Meng, J.; Peng, J.; Zhang, S.Q.; Zhao, P.W. Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation. Front. Phys. 2013, 8, 55–79. [Google Scholar] [CrossRef]
- Ring, P. Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 1996, 37, 193–263. [Google Scholar] [CrossRef]
- Vretenar, D.; Afanasjev, A.; Lalazissis, G.; Ring, P. Relativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys. Rep. 2005, 409, 101–259. [Google Scholar] [CrossRef]
- Meng, J.; Toki, H.; Zhou, S.; Zhang, S.; Long, W.; Geng, L. Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 2006, 57, 470–563. [Google Scholar] [CrossRef] [Green Version]
- Niksic, T.; Vretenar, D.; Ring, P. Relativistic nuclear energy density functionals: Mean-field and beyond. Prog. Part. Nucl. Phys. 2011, 66, 519–548. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Zhao, P. Relativistic density functional theory in nuclear physics. AAPPS Bull. 2021, 31, 2. [Google Scholar] [CrossRef]
- Ren, Z.X.; Zhao, P.W. Hamiltonian flow equations for a Dirac particle in large scalar and vector potentials. Phys. Rev. C 2019, 100, 044322. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.X.; Zhao, P.W. Toward a bridge between relativistic and nonrelativistic density functional theories for nuclei. Phys. Rev. C 2020, 102, 021301(R). [Google Scholar] [CrossRef]
- Toki, H.; Hirata, D.; Sugahara, Y.; Sumiyoshi, K.; Tanihata, I. Relativistic Many-body Approach for Unstable Nuclei and Supernova. Nucl. Phys. A 1995, 588, C357–C363. [Google Scholar] [CrossRef]
- Zhao, P.W.; Li, Z.P.; Yao, J.M.; Meng, J. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 2010, 82, 054319. [Google Scholar] [CrossRef]
- Boehnlein, A.; Diefenthaler, M.; Fanelli, C.; Hjorth-Jensen, M.; Horn, T.; Kuchera, M.P.; Lee, D.; Nazarewicz, W.; Orginos, K.; Ostroumov, P.; et al. Artificial Intelligence and Machine Learning in Nuclear Physics. arXiv 2021, arXiv:2112.02309. [Google Scholar]
- Wu, X.H.; Zhao, P.W. Predicting nuclear masses with the kernel ridge regression. Phys. Rev. C 2020, 101, 051301. [Google Scholar] [CrossRef]
- Wu, X.H.; Guo, L.H.; Zhao, P.W. Nuclear masses in extended kernel ridge regression with odd-even effects. Phys. Lett. B 2021, 819, 136387. [Google Scholar] [CrossRef]
- Wang, N.; Liu, M. Nuclear mass predictions with a radial basis function approach. Phys. Rev. C 2011, 84, 051303. [Google Scholar] [CrossRef]
- Ma, N.N.; Zhang, H.F.; Yin, P.; Bao, X.J.; Zhang, H.F. Weizsäcker-Skyrme-type nuclear mass formula incorporating two combinatorial radial basis function prescriptions and their application. Phys. Rev. C 2017, 96, 024302. [Google Scholar] [CrossRef]
- Niu, Z.; Liang, H.; Sun, B.; Niu, Y.; Guo, J.; Meng, J. High precision nuclear mass predictions towards a hundred kilo-electron-volt accuracy. Sci. Bull. 2018, 63, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Utama, R.; Piekarewicz, J.; Prosper, H.B. Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach. Phys. Rev. C 2016, 93, 014311. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Liang, H. Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects. Phys. Lett. B 2018, 778, 48–53. [Google Scholar] [CrossRef]
- Neufcourt, L.; Cao, Y.; Nazarewicz, W.; Viens, F. Bayesian approach to model-based extrapolation of nuclear observables. Phys. Rev. C 2018, 98, 034318. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Wang, L.H.; Yin, J.P.; Chen, P.H.; Zhang, H.F. Performance of the Levenberg–Marquardt neural network approach in nuclear mass prediction. J. Phys. G-Nucl. Part. Phys. 2017, 44, 045110. [Google Scholar] [CrossRef]
- Shelley, M.; Pastore, A. A New Mass Model for Nuclear Astrophysics: Crossing 200 keV Accuracy. Universe 2021, 7, 131. [Google Scholar] [CrossRef]
- Gao, Z.P.; Wang, Y.J.; Lü, H.L.; Li, Q.F.; Shen, C.W.; Liu, L. Machine learning the nuclear mass. Nucl. Sci. Tech. 2021, 32, 109. [Google Scholar] [CrossRef]
- Liu, Y.; Su, C.; Liu, J.; Danielewicz, P.; Xu, C.; Ren, Z. Improved naive Bayesian probability classifier in predictions of nuclear mass. Phys. Rev. C 2021, 104, 014315. [Google Scholar] [CrossRef]
- Zheng, J.S.; Wang, N.Y.; Wang, Z.Y.; Niu, Z.M.; Niu, Y.F.; Sun, B. Mass predictions of the relativistic mean-field model with the radial basis function approach. Phys. Rev. C 2014, 90, 014303. [Google Scholar] [CrossRef]
- Niu, Z.M.; Fang, J.Y.; Niu, Y.F. Comparative study of radial basis function and Bayesian neural network approaches in nuclear mass predictions. Phys. Rev. C 2019, 100, 054311. [Google Scholar] [CrossRef]
- Wu, X.H.; Ren, Z.X.; Zhao, P.W. Nuclear energy density functionals from machine learning. Phys. Rev. C 2022, 105, L031303. [Google Scholar] [CrossRef]
- Wang, M.; Audi, G.; Wapstra, A.H.; Kondev, F.G.; MacCormick, M.; Xu, X.; Pfeiffer, B. The AME2012 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2012, 36, 1603–2014. [Google Scholar] [CrossRef]
- Kratz, K.L.; Bitouzet, J.P.; Thielemann, F.K.; Moeller, P.; Pfeiffer, B. Isotopic r-Process Abundances and Nuclear Structure Far from Stability: Implications for the r-Process Mechanism. Astrophys. J. 1993, 403, 216. [Google Scholar] [CrossRef]
- Sun, B.; Montes, F.; Geng, L.S.; Geissel, H.; Litvinov, Y.A.; Meng, J. Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties. Phys. Rev. C 2008, 78, 025806. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Sun, B.; Meng, J. Influence of nuclear physics inputs and astrophysical conditions on the Th/U chronometer. Phys. Rev. C 2009, 80, 065806. [Google Scholar] [CrossRef]
- Xu, X.D.; Sun, B.; Niu, Z.M.; Li, Z.; Qian, Y.Z.; Meng, J. Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models. Phys. Rev. C 2013, 87, 015805. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zhang, S.Q. The r-process with the Newly Developed High-precision Mass Model WS4. Astrophys. J. 2019, 874, 5. [Google Scholar] [CrossRef]
- Möller, P.; Pfeiffer, B.; Kratz, K.L. New calculations of gross β-decay properties for astrophysical applications: Speeding-up the classical r process. Phys. Rev. C 2003, 67, 055802. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Wu, X.; Zhao, P. Nuclear Mass Predictions of the Relativistic Density Functional Theory with the Kernel Ridge Regression and the Application to r-Process Simulations. Symmetry 2022, 14, 1078. https://doi.org/10.3390/sym14061078
Guo L, Wu X, Zhao P. Nuclear Mass Predictions of the Relativistic Density Functional Theory with the Kernel Ridge Regression and the Application to r-Process Simulations. Symmetry. 2022; 14(6):1078. https://doi.org/10.3390/sym14061078
Chicago/Turabian StyleGuo, Lihan, Xinhui Wu, and Pengwei Zhao. 2022. "Nuclear Mass Predictions of the Relativistic Density Functional Theory with the Kernel Ridge Regression and the Application to r-Process Simulations" Symmetry 14, no. 6: 1078. https://doi.org/10.3390/sym14061078
APA StyleGuo, L., Wu, X., & Zhao, P. (2022). Nuclear Mass Predictions of the Relativistic Density Functional Theory with the Kernel Ridge Regression and the Application to r-Process Simulations. Symmetry, 14(6), 1078. https://doi.org/10.3390/sym14061078