Searching for New Physics in Hadronic Final States with Run 2 Proton–Proton Collision Data at the LHC
Abstract
:1. Introduction
2. Motivations and Challenges for Hadronic Searches at the LHC
2.1. Motivations
2.2. Challenges
3. Hadronic Physics Reconstruction and Performance
3.1. Inputs to Jet Reconstruction
3.1.1. Calorimeter-Based Inputs
3.1.2. Particle Flow Inputs
3.2. Standard Jet Reconstruction and Performance
3.2.1. Correcting the Jet Scale and Resolution
3.2.2. Mitigating Pileup Effects
3.2.3. Identifying Heavy Flavour Jets
3.3. Boosted Jet Reconstruction and Performance
3.3.1. Boosted Jet Reconstruction
3.3.2. Correcting the Jet Scale and Resolution
3.3.3. Identifying Boosted Hadronic Decays
4. Di-Jet Searches
4.1. High-Mass Di-Jet Searches
4.2. Trigger-Based Di-Jet Searches
4.3. Di-Jet Searches in Association with Other Objects
4.4. Boosted Di-Jet Searches in Association with Other Objects
5. Missing Transverse Momentum Plus X Searches
5.1. Missing Transverse Momentum Plus Jet Searches
5.2. Other Missing Transverse Momentum Searches
6. Hadronic Di-Boson Searches
6.1. Searches with Standard Model Bosons
6.2. Searches with Generic Bosons
7. Complementarity of Hadronic Physics Searches
8. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, L.; Bryant, P. LHC Machine. J. Instrum. 2008, 3, S08001. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. J. Instrum. 2008, 3, S08003. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. The CMS experiment at the CERN LHC. J. Instrum. 2008, 3, S08004. [Google Scholar] [CrossRef] [Green Version]
- de la Torre, H.; Farooque, T. Looking beyond the Standard Model with Third Generation Quarks at the LHC. Symmetry 2022, 14, 444. [Google Scholar] [CrossRef]
- Ferrari, A.; Rompotis, N. Exploration of Extended Higgs Sectors with Run-2 Proton-Proton Collision Data at the LHC. Symmetry 2021, 13, 2144. [Google Scholar] [CrossRef]
- Veatch, J. Searches for Resonant Scalar Boson Pair Production Using Run 2 LHC Proton-Proton Collision Data. Symmetry 2022, 14, 260. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. PTEP 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Standard Model Summary Plots June 2021. 2021. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-032 (accessed on 30 March 2022).
- ATLAS Collaboration. Trigger Menu in 2018. 2019. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-DAQ-PUB-2019-001 (accessed on 30 March 2022).
- CMS Collaboration. The Phase-2 Upgrade of the CMS Data Acquisition and High Level Trigger. 2021. Available online: https://cds.cern.ch/record/2759072 (accessed on 30 March 2022).
- Cacciari, M.; Salam, G.P.; Soyez, G. The anti-kt jet clustering algorithm. J. High Energy Phys. 2008, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1. Eur. Phys. J. C 2017, 77, 490. [Google Scholar] [CrossRef]
- CMS Collaboration. Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. J. Instrum. 2017, 12, P02014. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Jet reconstruction and performance using particle flow with the ATLAS Detector. Eur. Phys. J. C 2017, 77, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CMS Collaboration. Particle-flow reconstruction and global event description with the CMS detector. J. Instrum. 2017, 12, P10003. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Jet energy scale and resolution measured in proton–proton collisions at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 689. [Google Scholar] [CrossRef]
- CMS Collaboration. Jet Energy Scale and Resolution Performance with 13 TeV Data Collected by CMS in 2016–2018. 2020. Available online: https://cds.cern.ch/record/2715872 (accessed on 30 March 2022).
- ATLAS Collaboration. Performance of pile-up mitigation techniques for jets in pp collisions at = 8 TeV using the ATLAS detector. Eur. Phys. J. C 2016, 76, 581. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Pileup mitigation at CMS in 13 TeV data. J. Instrum. 2020, 15, P09018. [Google Scholar] [CrossRef]
- ATLAS Collaboration. EM+JES and PFlow Pile-Up Jet Rate—LHCP 2017. 2017. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2017-006/ (accessed on 30 March 2022).
- ATLAS Collaboration. ATLAS b-Jet Identification Performance and Efficiency Measurement with tt¯ Events in pp Collisions at = 13 TeV. Eur. Phys. J. C 2019, 79, 970. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. J. Instrum. 2018, 13, P05011. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, J.M.; Davison, A.R.; Rubin, M.; Salam, G.P. Jet substructure as a new Higgs search channel at the LHC. Phys. Rev. Lett. 2008, 100, 242001. [Google Scholar] [CrossRef] [Green Version]
- Krohn, D.; Thaler, J.; Wang, L.T. Jet Trimming. J. High Energy Phys. 2010, 2, 84. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Improving Jet Substructure Performance in ATLAS Using Track-CaloClusters. 2017. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-015 (accessed on 30 March 2022).
- ATLAS Collaboration. Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton–proton collisions. Eur. Phys. J. C 2021, 81, 334. [Google Scholar] [CrossRef]
- ATLAS Collaboration. In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector. Eur. Phys. J. C 2019, 79, 135. [Google Scholar] [CrossRef] [Green Version]
- Dokshitzer, Y.L.; Leder, G.D.; Moretti, S.; Webber, B.R. Better jet clustering algorithms. J. High Energy Phys. 1997, 8, 01. [Google Scholar] [CrossRef]
- Dasgupta, M.; Fregoso, A.; Marzani, S.; Salam, G.P. Towards an understanding of jet substructure. J. High Energy Phys. 2013, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Larkoski, A.J.; Marzani, S.; Soyez, G.; Thaler, J. Soft Drop. J. High Energy Phys. 2014, 5, 146. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Performance of jet substructure techniques for large-R jets in proton-proton collisions at s = 7 TeV using the ATLAS detector. J. High Energy Phys. 2013, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at = 8 TeV. Eur. Phys. J. C 2016, 76, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ATLAS Collaboration. Performance of Top Quark and W Boson Tagging in Run 2 with ATLAS. 2017. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-064 (accessed on 30 March 2022).
- CMS Collaboration. Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques. J. Instrum. 2020, 15, P06005. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of the ATLAS Detector Jet Mass Response Using Forward Folding with 80 fb −1 of = 13 TeV pp Data. 2020. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-022 (accessed on 30 March 2022).
- CMS Collaboration. W and Top Tagging Scale Factors for Run 2 Data. 2020. Available online: https://cds.cern.ch/record/2718978 (accessed on 30 March 2022).
- Thaler, J.; Van Tilburg, K. Identifying Boosted Objects with N-subjettiness. J. High Energy Phys. 2011, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC. Eur. Phys. J. C 2019, 79, 375. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Identification of Boosted Higgs Bosons Decaying Into bb¯ with Neural Networks and Variable Radius Subjets in ATLAS. 2020. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-019 (accessed on 30 March 2022).
- Dolen, J.; Harris, P.; Marzani, S.; Rappoccio, S.; Tran, N. Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure. J. High Energy Phys. 2016, 5, 156. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Performance of Mass-Decorrelated Jet Substructure Observables for Hadronic Two-Body Decay Tagging in ATLAS. 2018. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-014 (accessed on 30 March 2022).
- ATLAS Collaboration. Boosted Hadronic Vector Boson and Top Quark Tagging with ATLAS Using Run 2 Data. 2020. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-017 (accessed on 30 March 2022).
- Abercrombie, D.; Akchurin, N.; Akilli, E.; Maestre, J.A.; Allen, B.; Gonzalez, B.A.; Andrea, J.; Arbey, A.; Azuelos, G.; Azzi, P.; et al. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum. Phys. Dark Univ. 2020, 27, 100371. [Google Scholar] [CrossRef]
- LHC Dark Matter Working Group. Recommendations on Presenting LHC Searches for Missing Transverse Energy Signals Using Simplified s-Channel Models of Dark Matter. Phys. Dark Univ. 2020, 27, 100365. [Google Scholar] [CrossRef]
- LHC Dark Matter Working Group. Comparing LHC Searches for Dark Matter Mediators in Visible and Invisible Decay Channels and Calculations of the Thermal Relic Density. Phys. Dark Univ. 2019, 26, 100377. [Google Scholar] [CrossRef]
- LHC Dark Matter Working Group. Next-Generation Spin-0 Dark Matter Models. Phys. Dark Univ. 2020, 27, 100351. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Dark Matter Summary Plots for s-Channel and 2HDM+a Models. 2021. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-045 (accessed on 30 March 2022).
- CMS Collaboration. CMS Exotica Summary Plots for 13 TeV Data. 2022. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV (accessed on 24 May 2022).
- ATLAS Collaboration. Search for new resonances in mass distributions of jet pairs using 139 fb-1 of pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2020, 3, 145. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2020, 5, 33. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for new phenomena in dijet events using 37 fb-1 of pp collision data collected at = 13 TeV with the ATLAS detector. Phys. Rev. D 2017, 96, 52004. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for new physics in dijet angular distributions using proton–proton collisions at = 13 TeV and constraints on dark matter and other models. Eur. Phys. J. C 2018, 78, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CMS Collaboration. Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions at = 8 TeV. Phys. Rev. Lett. 2018, 120, 201801. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for tt¯ resonances in fully hadronic final states in pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2020, 10, 61. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for resonant tt¯ production in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2019, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at = 13 TeV. Phys. Rev. Lett. 2018, 121, 81801. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for narrow and broad dijet resonances in proton-proton collisions at = 13 TeV and constraints on dark matter mediators and other new particles. J. High Energy Phys. 2018, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for New Light Resonances Decaying to Jet Pairs and Produced in Association with a Photon or a Jet in Proton-Proton Collisions at = 13 TeV with the ATLAS Detector. 2016. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-070/ (accessed on 30 March 2022).
- ATLAS Collaboration. Search for low-mass resonances decaying into two jets and produced in association with a photon using pp collisions at =1 3 TeV with the ATLAS detector. Phys. Lett. B 2019, 795, 56–75. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for dijet resonances using events with three jets in proton-proton collisions at s = 13 TeV. Phys. Lett. B 2020, 805, 135448. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for dijet resonances in events with an isolated charged lepton using = 13 TeV proton-proton collision data collected by the ATLAS detector. J. High Energy Phys. 2020, 6, 151. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for Light Vector Resonances Decaying to Quarks at 13 TeV. 2016. Available online: http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-16-030/ (accessed on 30 March 2022).
- ATLAS Collaboration. Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at = 13 TeV with the ATLAS detector. Phys. Lett. B 2019, 788, 316–335. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for Low-Mass Quark–antiquark Resonances Produced in Association with a Photon at = 13 TeV. Phys. Rev. Lett. 2019, 123, 231803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CMS Collaboration. Search for low mass vector resonances decaying into quark–antiquark pairs in proton-proton collisions at = 13 TeV. Phys. Rev. D 2019, 100, 112007. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for low mass vector resonances decaying into quark–antiquark pairs in proton-proton collisions at s = 13 = 13 TeV. J. High Energy Phys. 2018, 1, 97. [Google Scholar] [CrossRef] [Green Version]
- Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric dark matter. Phys. Rept. 1996, 267, 195–373. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at = 13 TeV with the ATLAS detector. Phys. Rev. D 2021, 103, 112006. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2021, 11, 153. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2018, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for dark matter in association with an energetic photon in pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2021, 2, 226. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2019, 2, 74. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A. Gravity particles from Warped Extra Dimensions, predictions for LHC. arXiv 2014, arXiv:1404.0102. [Google Scholar]
- Salvioni, E.; Villadoro, G.; Zwirner, F. Minimal Z-prime models: Present bounds and early LHC reach. J. High Energy Phys. 2009, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Grojean, C.; Salvioni, E.; Torre, R. A weakly constrained W’ at the early LHC. J. High Energy Phys. 2011, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Pappadopulo, D.; Thamm, A.; Torre, R.; Wulzer, A. Heavy Vector Triplets: Bridging Theory and Data. J. High Energy Phys. 2014, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Lykken, J.D.; Zhang, R.J. On Kaluza-Klein states from large extra dimensions. Phys. Rev. D 1999, 59, 105006. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, W.D.; Wise, M.B. Modulus stabilization with bulk fields. Phys. Rev. Lett. 1999, 83, 4922–4925. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, W.D.; Wise, M.B. Phenomenology of a stabilized modulus. Phys. Lett. B 2000, 475, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Davoudiasl, H.; Hewett, J.L.; Rizzo, T.G. Experimental probes of localized gravity: On and off the wall. Phys. Rev. D 2001, 63, 75004. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, A.L.; Kaplan, J.; Randall, L.; Wang, L.T. Searching for the Kaluza-Klein Graviton in Bulk RS Models. J. High Energy Phys. 2007, 09, 013. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Davoudiasl, H.; Perez, G.; Soni, A. Warped Gravitons at the LHC and Beyond. Phys. Rev. D 2007, 76, 36006. [Google Scholar] [CrossRef] [Green Version]
- Antipin, O.; Atwood, D.; Soni, A. Search for RS gravitons via W(L)W(L) decays. Phys. Lett. B 2008, 666, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Antipin, O.; Soni, A. Towards establishing the spin of warped gravitons. J. High Energy Phys. 2008, 10, 018. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for diboson resonances in hadronic final states in 139 fb-1 of pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2019, 9, 91, Erratum in J. High Energy Phys. 2020, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. A multi-dimensional search for new heavy resonances decaying to boosted WW, WZ, or ZZ boson pairs in the dijet final state at 13 TeV. Eur. Phys. J. C 2020, 80, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CMS Collaboration. Search for New Heavy Resonances Decaying to WW, WZ, ZZ, WH, or ZH Boson Pairs in the All-Jets Final State in Proton-Proton Collisions at = 13 TeV. 2022. Available online: http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-20-009/index.html (accessed on 24 May 2022).
- ATLAS Collaboration. Searches for heavy diboson resonances in pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2016, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Combination of searches for heavy resonances decaying to WW, WZ, ZZ, WH, and ZH boson pairs in proton–proton collisions at = 8 and 13 TeV. Phys. Lett. B 2017, 774, 533–558. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Dijet resonance search with weak supervision using = 13 TeV pp collisions in the ATLAS detector. Phys. Rev. Lett. 2020, 125, 131801. [Google Scholar] [CrossRef]
- Metodiev, E.M.; Nachman, B.; Thaler, J. Classification without labels: Learning from mixed samples in high energy physics. J. High Energy Phys. 2017, 10, 174. [Google Scholar] [CrossRef] [Green Version]
Particle | Decay | Fraction () [9] | Ratio () |
---|---|---|---|
W boson | 21.34% | 3.159 | |
11.38% | 5.924 | ||
Hadronic | 67.41% | ||
Z boson | 6.7294% | 10.389 | |
3.3696% | 20.659 | ||
Invisible | 20.000% | 3.4806 | |
Hadronic | 69.911% | ||
H boson | 0.227% | 269 | |
2.62% | 23.3 | ||
21.4% | 2.85 | ||
6.27% | 9.74 | ||
Hadronic () | 61.09% | ||
top quark | 22.50% | 2.96 | |
10.7% | 6.21 | ||
Hadronic () | 66.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schramm, S. Searching for New Physics in Hadronic Final States with Run 2 Proton–Proton Collision Data at the LHC. Symmetry 2022, 14, 1173. https://doi.org/10.3390/sym14061173
Schramm S. Searching for New Physics in Hadronic Final States with Run 2 Proton–Proton Collision Data at the LHC. Symmetry. 2022; 14(6):1173. https://doi.org/10.3390/sym14061173
Chicago/Turabian StyleSchramm, Steven. 2022. "Searching for New Physics in Hadronic Final States with Run 2 Proton–Proton Collision Data at the LHC" Symmetry 14, no. 6: 1173. https://doi.org/10.3390/sym14061173
APA StyleSchramm, S. (2022). Searching for New Physics in Hadronic Final States with Run 2 Proton–Proton Collision Data at the LHC. Symmetry, 14(6), 1173. https://doi.org/10.3390/sym14061173