Off-Shell Probes of the Higgs Yukawa Couplings: Light Quarks and Charm
Abstract
:1. The Higgs Yukawa Couplings
2. Light Quark Yukawas in Triboson Final States
3. Off-Shell Probe of the Charm Yukawa
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdelalim, A.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- CMS Collaboration; Chatrchyan, S. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Cepeda, M.; Gori, S.; Ilten, P.; Kado, M.; Riva, F.; Khalek, R.A.; Aboubrahim, A.; Alimena, J.; Alioli, S.; Alves, A.; et al. Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr. 2019, 7, 221–584. [Google Scholar] [CrossRef]
- The FCC Collaboration. FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. Eur. Phys. J. C 2019, 79, 474. [Google Scholar] [CrossRef] [Green Version]
- Michael, B.; Alain, B.; Olivier, B.; Mar, C.G.; Francesco, C.; Johannes, G.; Patrick, J.; Miguel, J.J.; Volker, M.; Attilio, M.; et al. FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. Eur. Phys. J. ST 2019, 228, 261–623. [Google Scholar] [CrossRef]
- FCC Collaboration. FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. ST 2019, 228, 755–1107. [Google Scholar] [CrossRef]
- Behnke, T.; Brau, J.E.; Foster, B.; Fuster, J.; Harrison, M.; Paterson, J.M.; Peskin, M.; Stanitzki, M.; Walker, N.; Yamamoto, H. The International Linear Collider Technical Design Report—Volume 1: Executive Summary. arXiv 2013, arXiv:1306.6327. [Google Scholar]
- Stratakis, D.; Mokhov, N.; Palmer, M.; Pastrone, N.; Raubenheimer, T.; Rogers, C.; Schulte, D.; Shiltsev, V.; Tang, J.; Yamamoto, A.; et al. A Muon Collider Facility for Physics Discovery. arXiv 2022, arXiv:2203.08033. [Google Scholar]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Combined measurements of Higgs boson production and decay using up to 139 fb−1 of proton-proton collision data at s=13 TeV collected with the ATLAS experiment. Phys. Rev. D 2020, 101, 012002. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Measurements of Higgs boson production cross-sections in the H→τ+τ− decay channel in pp collisions at s=13TeV with the ATLAS detector. arXiv 2022, arXiv:2201.08269. [Google Scholar]
- ATLAS Collaboration. Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at s=13 TeV with the ATLAS detector. Phys. Lett. B 2021, 816, 136204. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector. Phys. Rev. D 2018, 97, 072003. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Measurements of tt¯H Production and the CP Structure of the Yukawa Interaction between the Higgs Boson and Top Quark in the Diphoton Decay Channel. Phys. Rev. Lett. 2020, 125, 061801. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of Higgs Boson Production and Decay to the ττ Final State. CMS-PAS-HIG-18-032. 2019. Available online: https://cds.cern.ch/record/2668685 (accessed on 7 June 2022).
- CMS Collaboration. Observation of Higgs boson decay to bottom quarks. Phys. Rev. Lett. 2018, 121, 121801. [Google Scholar] [CrossRef] [Green Version]
- The ATLAS Collaboration. A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector. Phys. Lett. B 2021, 812, 135980. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Valle, A.E.D.; Frühwirth, R.; Jeitler, M.; Krammer, N.; et al. Evidence for Higgs boson decay to a pair of muons. J. High Energy Phys. 2021, 1, 148. [Google Scholar] [CrossRef]
- Vignaroli, N. Searching for a dilaton decaying to muon pairs at the LHC. Phys. Rev. D 2009, 80, 095023. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Combined Higgs Boson Production and Decay Measurements with up to 137 fb-1 of Proton-Proton Collision Data at s = 13 TeV. Tech. Rep. CMS-PAS-HIG-19-005. 2020. Available online: https://cds.cern.ch/record/2706103 (accessed on 7 June 2022).
- ATLAS Collaboration. A Combination of Measurements of Higgs Boson Production and Decay Using Up to 139 fb-1 of Proton–Proton Collision Data at s= 13 TeV Collected with the ATLAS Experiment . No. PUBDB-2020-05116. LHC/ATLAS Experiment. 2020. Available online: https://cds.cern.ch/record/2789544 (accessed on 7 June 2022).
- Kagan, A.L.; Perez, G.; Petriello, F.; Soreq, Y.; Stoynev, S.; Zupan, J. Exclusive Window onto Higgs Yukawa Couplings. Phys. Rev. Lett. 2015, 114, 101802. [Google Scholar] [CrossRef]
- Yu, F. Phenomenology of Enhanced Light Quark Yukawa Couplings and the W±h Charge Asymmetry. J. High Energy Phys. 2017, 2, 083. [Google Scholar] [CrossRef]
- Alasfar, L.; Lopez, R.C.; Gröber, R. Probing Higgs couplings to light quarks via Higgs pair production. J. High Energy Phys. 2019, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Soreq, Y.; Zhu, H.X.; Zupan, J. Light quark Yukawa couplings from Higgs kinematics. J. High Energy Phys. 2016, 12, 045. [Google Scholar] [CrossRef] [Green Version]
- Henning, B.; Lombardo, D.; Riembau, M.; Riva, F. Measuring Higgs Couplings without Higgs Bosons. Phys. Rev. Lett. 2019, 123, 181801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkowski, A.; Ganguly, S.; Gras, P.; No, J.M.; Tobioka, K.; Vignaroli, N.; You, T. Light quark Yukawas in triboson final states. J. High Energy Phys. 2021, 4, 023. [Google Scholar] [CrossRef]
- Agashe, K.; Contino, R.; Pomarol, A. The Minimal composite Higgs model. Nucl. Phys. B 2005, 719, 165–187. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.W.; Quigg, C.; Thacker, H.B. Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass. Phys. Rev. D 1977, 16, 1519. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Observation of the Production of Three Massive Gauge Bosons at s =13 TeV. Phys. Rev. Lett. 2020, 125, 151802. [Google Scholar] [CrossRef]
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.S.; Stelzer, T.; Torrielli, P.; Zaro, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 2014, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Dittmaier, S.; Huss, A.; Knippen, G. Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders. J. High Energy Phys. 2017, 9, 034. [Google Scholar] [CrossRef] [Green Version]
- Binoth, T.; Ossola, G.; Papadopoulos, C.G.; Pittau, R. NLO QCD corrections to tri-boson production. J. High Energy Phys. 2008, 6, 082. [Google Scholar] [CrossRef]
- Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T. UFO—The Universal FeynRules Output. Comput. Phys. Commun. 2012, 183, 1201–1214. [Google Scholar] [CrossRef] [Green Version]
- Vignaroli, N. Effective Model for Modifications to Higgs Yukawa Couplings. Available online: https://feynrules.irmp.ucl.ac.be/wiki/YqHEFT (accessed on 7 June 2022).
- ATLAS Collaboration. Prospects for H→cc¯ Using Charm Tagging with the ATLAS Experiment at the HL-LHC. ATL-PHYS-PUB-2018-016. 2018. Available online: http://cds.cern.ch/record/2633635 (accessed on 7 June 2022).
- Han, T.; Nachman, B.; Wang, X. Charm-quark Yukawa Coupling in h→cc¯γ at LHC. Phys. Lett. B 2019, 793, 90–96. [Google Scholar] [CrossRef]
- Carlson, B.; Han, T.; Leung, S.C.I. Higgs boson to charm quark decay in vector boson fusion plus a photon. Phys. Rev. D 2021, 104, 073006. [Google Scholar] [CrossRef]
- Perez, G.; Soreq, Y.; Stamou, E.; Tobioka, K. Constraining the charm Yukawa and Higgs-quark coupling universality. Phys. Rev. D 2015, 92, 033016. [Google Scholar] [CrossRef] [Green Version]
- Bodwin, G.T.; Petriello, F.; Stoynev, S.; Velasco, M. Higgs boson decays to quarkonia and the Hc¯c coupling. Phys. Rev. D 2013, 88, 053003. [Google Scholar] [CrossRef] [Green Version]
- Brivio, I.; Goertz, F.; Isidori, G. Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production. Phys. Rev. Lett. 2015, 115, 211801. [Google Scholar] [CrossRef] [Green Version]
- Coyle, N.M.; Wagner, C.E.M.; Wei, V. Bounding the charm Yukawa coupling. Phys. Rev. D 2019, 100, 073013. [Google Scholar] [CrossRef] [Green Version]
- Brooijmans, G.; Buckley, A.; Caron, S.; Falkowski, A.; Fuks, B.; Gilbert, A.; Murray, W.J.; Nardecchia, M.; No, J.M.; Torre, R.; et al. Les Houches 2019 Physics at TeV Colliders: New Physics Working Group Report. arXiv 2002, arXiv:2002.12220. [Google Scholar]
HL-LHC | SM | BSM () | BSM () | BSM () |
152 fb | 3.6 pb | 3.6 pb | 110 fb | |
87 fb | 1.5 pb | 1.5 pb | 110 fb | |
40 fb | 1.0 pb | 1.0 pb | 31 fb | |
23 fb | 0.43 pb | 0.43 pb | 31 fb | |
191 fb | 1.5 pb | 2.4 pb | 120 fb | |
16 fb | 0.99 pb | 1.7 pb | 66 fb | |
FCC-hh | SM | BSM ( ) | BSM ( ) | BSM ( ) |
2.35 pb | 290 pb | 290 pb | 16 pb | |
1.76 pb | 140 pb | 140 pb | 16 pb | |
756 fb | 74 pb | 74 pb | 4.4 pb | |
579 fb | 36 pb | 36 pb | 4.4 pb | |
3.93 pb | 94 pb | 150 pb | 12 pb | |
231 fb | 110 pb | 180 pb | 11 pb |
Comb. | Comb. | |||||
---|---|---|---|---|---|---|
430 (36) | 840 (54) | 420 (34) | 1500 (65) | 1300 (93) | 1100 (60) | |
850 (71) | 1700 (110) | 830 (68) | 2300 (100) | 1800 (140) | 1600 (92) | |
150 (13) | 230 (33) | 140 (13) | 300 (12) | 290 (16) | 250 (11) |
HL-LHC | SM () | INT () | BSM () |
2.3 pb | 0.58 pb | 63 pb | |
0.86 pb | 0.17 pb | 17 pb | |
0.79 pb | 0.09 pb | 9.1 pb | |
0.19 pb | 0.14 pb | 15 pb | |
29 fb | 0.42 fb | 94 fb | |
23 fb | 0.31 fb | 90 fb | |
FCC-hh | SM ( ) | INT ( ) | BSM ( ) |
92 pb | 6.4 pb | 660 pb | |
36 pb | 1.8 pb | 190 pb | |
35 pb | 1.3 pb | 130 pb | |
6.8 pb | 1.6 pb | 180 pb | |
0.76 pb | 2.8 fb | 3.0 pb | |
0.68 pb | 3.2 fb | 3.0 pb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vignaroli, N. Off-Shell Probes of the Higgs Yukawa Couplings: Light Quarks and Charm. Symmetry 2022, 14, 1183. https://doi.org/10.3390/sym14061183
Vignaroli N. Off-Shell Probes of the Higgs Yukawa Couplings: Light Quarks and Charm. Symmetry. 2022; 14(6):1183. https://doi.org/10.3390/sym14061183
Chicago/Turabian StyleVignaroli, Natascia. 2022. "Off-Shell Probes of the Higgs Yukawa Couplings: Light Quarks and Charm" Symmetry 14, no. 6: 1183. https://doi.org/10.3390/sym14061183
APA StyleVignaroli, N. (2022). Off-Shell Probes of the Higgs Yukawa Couplings: Light Quarks and Charm. Symmetry, 14(6), 1183. https://doi.org/10.3390/sym14061183