Next Article in Journal
Distance Bounds for Generalized Bicycle Codes
Previous Article in Journal
A Novel Integrated Method for Harmonic Suppression and Reactive Power Compensation in Distribution Network
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Codazzi Couplings on the Metric (E4 = I)−Manifolds

1
Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
2
Department of Mathematics, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2022, 14(7), 1346; https://doi.org/10.3390/sym14071346
Submission received: 7 June 2022 / Revised: 19 June 2022 / Accepted: 25 June 2022 / Published: 29 June 2022
(This article belongs to the Section Mathematics)

Abstract

:
Let M k be a metric E 4 = I manifold equipped with electromagnetic-type structure E, a pseudo-Riemannian metric g and a nondegenerate 2 form ω ^ . The paper deals with Codazzi couplings of an affine connection ∇ with E, g and ω ^ . We present some results concerning the relationship of these Codazzi couplings. In addition, we construct the connection between Codazzi couplings and e ( E 4 = I ) Kaehler manifolds.

1. Introduction

A metric E 4 = I manifold is a k dimensional pseudo-Riemannian manifold M k which consists of a ( 1 , 1 ) tensor field E and a pseudo-Riemannian metric g satisfying the following:
(a)
E 4 = I , whose characteristic polynomial is ( λ 1 ) β 1 ( λ + 1 ) β 2 ( λ 2 + 1 ) s with β 1 + β 2 + 2 s = k ;
(b)
g E K , L + g K , E L = 0 , then g is necessarily pseudo-Riemannian and β 1 = β 2 .
A E 4 = I structure combines an almost-product structure and an almost-complex structure. In addition, it is a generalization of the electromagnetic tensor field. The condition (b) is the condition that the pseudo-Riemannian metric g is an aem (adapted in the electromagnetic sense metric). In addition, this condition generalizes in a sense of that of Mishra [1] and Hlavaty [2]. For g being an aem, a metric E 4 = I manifold will be called e ( E 4 = I ) Kaehler manifold if E is parallel relative to the Levi–Civita connection g of g  ( g E = 0 ) [3].
Let the triple ( M k , E , g ) be a metric E 4 = I manifold. Then, fundamental 2 form ω ^ can be defined by the formula:
ω ^ K , L = g E K , L = g K , E L = ω ^ ( L , K ) .
In the present paper, we will take manifold as a smooth k manifold and use the character E , g and ω ^ for the electromagnetic-type structure, the pseudo-Riemannian metric g and the 2 form, respectively. Furthermore, the quadruple ( M k , E , g , ω ^ ) is denoted as e ( E 4 = I ) Kaehler manifold. It is easy to say that the following satisfy:
(i)
if E is an electromagnetic-type structure, E ^ = E 1 = E 3 is an electromagnetic-type structure, which we will call an E ^ conjugate electromagnetic-type structure.
(ii)
if E is an electromagnetic-type structure, P = E 2 is an almost-product structure.
Note that substitution K = E ^ K and L = E ^ L in g E K , L + g K , E L = 0 immediately gives that g E ^ K , L + g K , E ^ L = 0 . Moreover, g E = 0 if and only if g E ^ = 0 . Hence, ( M k , E ^ , g ) is another e ( E 4 = I ) Kaehler manifold.
The e ( E 4 = I ) Kaehler manifolds were firstly constructed by Gadea and Amilibia in [3]. In this paper, the authors showed many of the results obtained for Kaehler manifolds in this more general context. In particular, the Riemannian curvature tensor R satisfies an identity, involving E, in addition to the usual symmetries. As in the Kaehler case, this is used to show that R is determined by its values on quadruplets ( K , E K , K , E K ) , K Sec T ( M k ) . This, in turn, leads to an analogue of the notion of constant holomorphic sectional curvature. The authors show that such manifolds are locally products of Kaehler manifolds and ones in which E 2 = I . They give models for the latter in which M k is the tangent bundle to a sphere.
In [4], Fei and Zhang studied the interaction of Codazzi couplings with para-Kaehler geometry. The authors obtain the structural results that the Kleinian group acts on an arbitrary affine connection by g conjugation, ω ^ conjugation, and L gauge transformation, where g is the pseudo-Riemannian metric, ω ^ is a non-degenerate 2 form and L is the tangent bundle isomorphism on smooth manifolds. They established the relationship of Codazzi couplings of a torsion-free connection with a compatible triple. They also showed the compatibility of a pair of connections with Kaehler and para-Kaehler structures, which generalizes special Kaehler geometry (where the connection is curvature-free) to Codazzi-Kaehler geometry (where the connection need not be curvature-free). Later, Gezer and Cakicioglu [5] obtained some new results concerning with Codazzi pairs on the anti-Hermitian context by using different arguments. The paper aims to study Codazzi couplings on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . The analogous case with almost Hermitian case was worked out earlier by Fei and Zhang [4].

2. Conjugate Connection and Codazzi Coupling

Let ( M k , E , g , ω ^ ) be a metric E 4 = I manifold and ∇ be an affine connection. Next, we define, respectively, the conjugate connections of ∇ according to g, ω ^ and E by the equations [6]:
M g K , L = g M K , L + g K , M * L ,
M ω ^ K , L = ω ^ M K , L + ω ^ ( K , M L )
and
E ( K , L ) = E ^ ( K E L )
for all vector fields K , L , M on M k . These connections are called a g conjugate connection, ω ^ conjugate connection and E conjugate connection, respectively. Note that both g conjugate connection and ω ^ conjugate connection satisfy * * = and = . It is clear that g = 0 if and only if * (or ) coincides with ∇. For conjugate connections, we also refer to [7,8,9].
Considering the pair ( , g ) , the ( 0 , 3 ) tensor fields C and Γ are constructed, respectively, by
C ( K , L , M ) : = ( M g ) ( K , L )
and
Γ ( K , L , M ) : = ( M ω ^ ) ( K , L ) = ( M ω ^ ) ( K , L ) ,
where the tensor field C is referred to as the cubic form associated to the pair ( , g ) and Γ is in analogous to the cubic form C [4].
The curvature tensor field R of an affine connection ∇ is defined by, for all vector fields K , L , M ,
R ( K , L ) M = K L M L K M [ K , L ] M
and its ( 0 , 4 ) curvature tensor field is as follows:
R ( K , L , M , N ) = g ( R ( K , L ) M , N ) .
For the curvature tensor fields of ∇, * and E , the theorem is given below.
Theorem 1.
Let ( M k , E , g , ω ^ ) be a metric E 4 = I manifold. * and E assign, respectively, g conjugation and E conjugation of an affine connectionon M k . The relationship between the ( 0 , 4 ) curvature tensor fields R , R * and R E of ∇, * and E is as follows:
R K , L , E M , N = R * K , L , N , E M = R E ( K , L , M , E N )
for all vector fields K , L , M on M k .
Proof. 
It suffices to prove it only on one basis, because the relation is linear in the arguments K , L , N and M. Thus, we suppose that K , L , N , M { x 1 , , x k } and take computational advantage of the following vanishing Lie brackets
[ K , L ] = [ L , N ] = [ N , M ] = 0 .
From here, it is obtained that
K L ω ^ M , N = K ( L g E M , N ) = K g L E M , N + g E M , L * N = K g L E M , N + K g E M , L * N = g K L E M , N + g L E M , K * N + g K E M , L * N ) + g ( E M , K * L * N
and similarly
L K ω ^ M , N = L K g E M , N = g L K E M , N + g K E M , L * N + g L E M , K * N ) + g ( E N , L * K * N .
When we subtract the above equations from each other, we find
0 = K , L ω ^ M , N = K L ω ^ M , N L K ω ^ M , N 0 = g K L E M L K E M , N + g E M , K * L * N L * K * N g L K E M , N g K E M , L * N g L E M , K * N ) g ( E M , L * K * N 0 = g R K , L E M , N + g R * K , L N , E M 0 = R K , L , E M , N + R * K , L , N , E M
R K , L , E M , N = R * K , L , N , E M
and similarly
g K L E M L K E M , N + g E M , K * L * N L * K * N = 0 ω ^ E ^ K L E M L K E M , N + ω ^ M , K * L * N L * K * N = 0 ω ^ E ^ K E E ^ L E M E ^ L E E ^ K E M , N + ω ^ M , K * L * N L * K * N = 0 ω ^ E ^ K E L E M E ^ L E K E M , N + ω ^ M , K * L * N L * K * N = 0 ω ^ K E L E M L E K E M , N + ω ^ M , K * L * N L * K * N = 0 g K E L E M L E K E M , E N + g K * L * N L * K * N , E M = 0 R E K , L , M , E N + R * K , L , N , E M = 0 R E K , L , M , E N = R * K , L , N , E M .
Thus, it is obtained that R K , L , E M , N = R * K , L , N , E M = R E ( K , L , M , E N ) which completes the proof. □
Given an arbitrary affine connection ∇ on a pseudo-Riemannian manifold ( M k , g ) , for any ( 1 , 1 ) tensor field E and a symmetric bilinear form ρ on M k , we call ( , E ) and ( , ρ ) , respectively, Codazzi-coupled, if their covariant derivative ( E ) and ( ρ ) , respectively, is (totally) symmetric in K , L , M [6]:
M E K = K E M , M ρ K , L = K ρ M , L .
Next, we search characterization of Codazzi couplings of an affine connection ∇ on M k with a pseudo-Riemannian metric g and an electromagnetic-type structure E. We give the following proposition, which is analogous to the result given in [4] for a Hermitian setting.
Proposition 1.
Letbe an affine connection on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . If ( , ω ^ ) is Codazzi-coupled, the following are provided:
(i) 
Γ K , L , M = M ω ^ K , L is not totally symetric;
(ii) 
Γ K , L , M = Γ K , M , L andhave equal torsions;
(iii) 
* andhave equal torsionsif and only if ( * , E ) is Codazzi-coupled.
Proof. (i) Since ω ^ is skew-symmetric, Γ K , L , M = Γ L , K , M . Therefore, Γ is not totally symetric.
(ii)
Γ K , L , M Γ K , M , L = M ω ^ K , L L ω ^ K , M = Z ω ^ K , L ω ^ M K , L ω ^ K , M L L ω ^ K , M + ω ^ L K , M + ω ^ ( K , L M ) = ω ^ M K , L + ω ^ K , M L ω ^ M K , L ω ^ K , M L ω ^ L K , M ω ^ K , L M + ω ^ L K , M + ω ^ ( K , L M ) = ω ^ K , M L ω ^ ( K , L M ) = ω ^ K , M L L M = ω ^ K , T M , L T M , L = 0 T = T ,
where
T M , L = M L L M [ M , L ] T M , L = M L L M [ M , L ] .
(iii) From the covariant derivative, we have
M ω ^ K , L = K ω ^ M , L ω ^ K , L ω ^ M K , L ω ^ K , M L = K ω ^ M , L ω ^ K M , L ω ^ ( M , K L ) M g E K , L g E M K , L g E K , M L = K g E M , L g E K M , L g ( E M , K L ) g M * ( E K ) , L g E M K , L = g K * ( E M ) , L g ( E K M , L ) ω ^ E ^ M * E K , L ω ^ M K , L = ω ^ E ^ K * E M , L ω ^ K M , L ω ^ E ^ M * E K K * E M , L = ω ^ M K K M , L E 1 M * E K K * E M = M K K M E ^ M * E K + E ( M * K ) ( K * E ) M E ( K * M ) = M K K M E ^ { M * E K ( K * E ) M } + E ^ { E ( M * K K * M ) } = M K K M E ^ { M * E K ( K * E ) M } + ( ( M * K K * M ) [ M , K ] ) = M K K M [ M , K ] E ^ { M * E K ( K * E ) M } = T ( M , K ) T * ( M , K ) ,
where
T * M , L = M * L L * M [ M , L ] .
Therefore, T * ( M , K ) = T M , K M * E K = ( K * E ) M , that is, ( * , E ) is Codazzi-coupled. □
Proposition 2.
Letbe an affine connection on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . The followings are equivalent:
(i) 
( , E ) is Codazzi-coupled;
(ii) 
and E have equal torsions;
(iii) 
( E , E ^ ) is Codazzi-coupled,
where E ^ is a conjugate electromagnetic-type structure on ( M k , E , g , ω ^ ) .
Proof. 
Let ( , E ) be Codazzi-coupled. Using T K , L = K L L K [ K , L ] and T E K , L = K E L L E K [ K , L ] , we yield
T E K , L T K , L = K E L K L L E K + L K = E ^ K E L K L E ^ L E K + L K = E ^ K E L + E K L K L E ^ L E K + E L K + L K = E ^ K E L + K L K L E ^ L E K L K + L K = E ^ K E L L E K = 0 .
On the other hand, it is straightforward to obtain
K E E ^ L L E E ^ K = K E E ^ L E ^ K E L L E E ^ K + E ^ L E K = E ^ K L E ^ E ^ K E L E ^ L K + E ^ E ^ L E K = E ^ K L E ^ 2 K E L + E K L E ^ L K + E ^ 2 L E K + E L K = E ^ K L P K E L E ^ K L E ^ L K + P L E K + E ^ L K = P L E K K E L ,
which gives to us: K E E ^ L L E E ^ K = 0 L E K K E L = 0 . Hence, the proof is completed. □
Proposition 3.
Letbe an affine connection on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . If ( , E ) and ( , P ) are Codazzi-coupled, ( E , E ) is Codazzi-coupled, where P = E 2 .
Proof. 
Standard calculations give
K E E K L E E K = K E E L E K E L L E E K + E L E K = E 1 K P L E E ^ K E L E ^ L P K + E E ^ L E K = E ^ K P L K E L E ^ L P K + L E K = E ^ K P L + P K L K E L E K L E ^ L P K + P L K + L E K + E L K = E ^ K P L + E K L K E L E K L E ^ L P K E L K + L E K + E L K = E ^ K P L L P K + L E K K E L .
Thus, the result is given. □
Proposition 4.
Letbe an affine connection on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . In that case, the following are equivalent:
(i) 
ω ^ T K , L , M = ω ^ T K , L , M + ω ^ K , L , M ω ^ L , K , M ;
(ii) 
ω ^ is symmetric if and only if ω ^ is symmetric.
Proof. (i) From the definition of ω ^ conjugation, it follows that
ω ^ T K , L , M = ω ^ K L L K K , L , M = ω ^ K L , M ω ^ L K , M ω ^ K , L , M = K ω ^ L , M ω ^ L , K M L ω ^ K , M + ω ^ K , L M ω ^ K L L K T K , L , M = K ω ^ L , M ω ^ L , K M L ω ^ K , M + ω ^ K , L M ω ^ K L , M + ω ^ L K , M + ω ^ T K , L , M = K ω ^ L , M L ω ^ K , M + ω ^ T K , L , M .
(ii) Similarly, we obtain
ω ^ K , L , M = K ω ^ L , M = K ω ^ L , M ω ^ K L , M ω ^ L , K M = K ω ^ L , M K ω ^ L , M + ω ^ L , K M K ω ^ L , M + ω ^ K L , M = K ω ^ L , M + ω ^ L , K M + ω ^ K L , M = K ω ^ L , M = ω ^ K , L , M .
Proposition 5.
Letbe an affine connection on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . In that case,
(i) 
ω ^ R K , L , M , N = ω ^ M , R K , L , N = ω ^ R K , L , N , M ;
(ii) 
If is flat,is flat, too,
where denotes ω ^ conjugation ofon M k and R and R are, respectively, the curvature tensor fields ofand .
Proof. 
ω ^ R K , L , M , N = ω ^ K L M L K M K , L M , N = ω ^ K L M , N ω ^ L K M , N ω ^ K , L M , N = K ω ^ L M , N ω ^ L M , K N L ω ^ K M , N + ω ^ K M , L N K , L ω ^ M , N + ω ^ M , K , L N .
On the other hand, using K , L ω ^ M , N = K L ω ^ M , N L K ω ^ M , N , we have
K L ω ^ M , N = K L ω ^ M , N = K ( ω ^ L M , N + ω ^ M , L N = K ω ^ L M , N + K ω ^ M , L N = ω ^ K L M , N + ω ^ L M , K N + ω ^ K M , L N + ω ^ M , K L N
and similarly
L K ω ^ M , N = ω ^ L K M , N + ω ^ K M , L N + ω ^ L M , K N + ω ^ M , L K N .
Thus
L K ω ^ M , N K L ω ^ M , N = ω ^ L K M , N + ω ^ K M , L N + ω ^ L M , K N + ω ^ M , L K N ω ^ K L M , N ω ^ L M , K N ω ^ K M , L N ω ^ M , K L N = ω ^ K L M L K M , N ω ^ M , K L N L K N .
From the last equation, we obtain
ω ^ R K , L , M , N = ω ^ K L M , N + ω ^ L M , K N ω ^ L M , K N ω ^ L K M , N ω ^ K M , L N + ω ^ K M , L N ω ^ K L M L K M , N ω ^ M , K L N L K N + ω ^ M , K , L N = ω ^ K L M L K M , N ω ^ K L M L K M , N ω ^ M , K L N L K N K , L N = ω ^ M , R K , L , N = ω ^ R K , L , N , M .
Proposition 6.
Letbe an affine connection on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . If ω ^ is symmetric and ( , E ) is Codazzi-coupled, ( , E ) is so.
Proof. 
ω ^ K E L L E K , M = ω ^ K E L , M ω ^ L E K , M = ω ^ K E L E K L , M ω ^ L E K E L K , M = ω ^ K E L , M ω ^ E K L , M ω ^ L E K , M + ω ^ E L K , M = ω ^ M , K E L ω ^ E K L , M + ω ^ M , L E K + ω ^ E L K , M = K ω ^ M , E L + ω ^ K M , E L + L ω ^ M , E K ω ^ L M , E K ω ^ E K L , M + ω ^ E L K , M = K ω ^ E L , M ω ^ E L , K M L ω ^ E K , M + ω ^ E K , L M ω ^ E K L L K , M = K ω ^ E L , M ω ^ E L , K M L ω ^ E K , M + ω ^ E K , L M ω ^ E T K , L + K , L , M .
From T = T , we obtain
= K ω ^ E L , M ω ^ E L , K M L ω ^ E K , M + ω ^ E K , L M ω ^ E K L L K , M = K ω ^ E L , M + ω ^ K E L , M + ω ^ E L , K M ω ^ E L , K M L ω ^ E K , M ω ^ L E K , M ω ^ E K , L M + ω ^ E K , L M ω ^ E K L , M + ω ^ E L K , M = K ω ^ E L , M + ω ^ K E L , M L ω ^ E K , M ω ^ L E K , M ω ^ E K L , M + ω ^ E L K , M = K ω ^ E L , M + ω ^ ( K E ) L , M + ω ^ E K L , M L ω ^ E K , M ω ^ ( L E ) K , M ω ^ E L K , M ω ^ E K L , M + ω ^ E L K , M = K ω ^ E L , M L ω ^ E K , M + ω ^ ( K E L ( L E ) K , M ) .
Hence, the proof is completed. □
Recall that a structure is integrable if N E = 0 , where N E is Nijenhuis tensor. In that case, the integrability of the electromagnetic-type structure E is equivalent to N E = 0 :
N E ( K , L ) = E K , E L E E K , L E K , E L + E 2 K , L .
Proposition 7.
Letbe an affine connection on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . In the case that ( , E ) is Codazzi-coupled, , P is Codazzi-coupled if and only if E is integrable, where P = E 2 .
Proof. 
From the condition that ( , E ) being Codazzi-coupled, we have
N E K , L = E K , E L E K , E L E E K , L + E 2 K , L = E K E L E L E K E K E L E L K E E K L L E K + P K L L K = E K E L + E E K L E L E K + E E L K E K E L + E K L E L K E E K L L E K E L K + P K L L K = E K E L + E E K L E L E K E E L K E K E L P K L + E E L K E E K L + E L E K + P L K + P K L P L K = E K E L E L E K E K E L + E L E K = ( L E ) E K K E E L + E L E K K E L = L P K E L E K K P L + E K E L + E L E K K E L = L P K K P L .
From this, we can say that , P is Codazzi-coupled if and only if E is integrable. □

3. (Codazzi) e ( E 4 = I ) Kaehler Manifold

Next, we search the Codazzi couplings with respect to the torsion-free connection ∇: Codazzi coupling of ∇ with E, Codazzi coupling of ∇ with g, and ω ^ = 0 (that is, ∇ is an almost-symplectic connection). By means of these Codazzi couplings, we plan to approach (Codazzi) e ( E 4 = I ) Kaehler manifold.
Let ( M k , g ) be a (pseudo-)Riemannian manifold with the torsion-free connection ∇. If ( , g ) is Codazzi-coupled, the manifold M k with a statistical structure ( , g ) is named a statistical manifold. This type of manifold was first described by Lauritzen [10]. Statistical manifolds have been extensively researched in affine differential geometry [8,10] and have an important role plays in information geometry. The following theorem is analogue to the theorem given by Fei and Zhang [4] for a Hermitian setting.
Theorem 2.
Letbe an affine connection on the metric E 4 = I manifold ( M k , E , g , ω ^ ) . Assuming that
(i) 
( , g ) is Codazzi-coupled;
(ii) 
( , J ) and ( , P ) are Codazzi-coupled, where P = J 2 .
Then, ( M k , g , E ) is a (Codazzi) e ( E 4 = I ) Kaehler manifold.
Proof. 
We shall prove that E is integrable and ω ^ is closed.
From Proposition 7, we have that E is integrable if ( , E ) and ( , P ) are Codazzi-coupled to a torsion-free connection . Therefore, we only shall prove that d ω ^ = 0 . We obtain
M ω ^ K , L = M ω ^ K , L ω ^ M K , L ω ^ K , M L = M g E K , L g E M K , L g E K , M L = M g E K , L + g M E K , L = C E K , L , M + g M E K , L .
Using M g E K , L = M g E K , L g M E K , L g E K , M L , we obtain
= M g E K , L g M E K , L g E M K , L g E K , M L ) .
Similarly
K ω ^ L , M = K ω ^ L , M ω ^ K L , M ω ^ L , K M = C E L , M , K + g K E L , M = K g E L , M g K E L , M g E K L , M g E L , K M )
and
L ω ^ M , K = L ω ^ M , K ω ^ L M , K ω ^ ( M , L K ) = C E M , K , L + g L E M , K = L g E M , K g L E M , K g E L M , K g E M , L K ) .
We use (1), (2) and (3) in the following equation
d ω ^ K , L , M = K ω ^ L , M + L ω ^ M , K + M ω ^ K , L
(see also [4]). In addition, we find
d ω ^ K , L , M = K ω ^ L , M + L ω ^ M , K + M ω ^ K , L = C E K , L , M + C E L , M , K + C E M , K , L + g M E K , L + g K E L , M + g L E M , K
and similarly
d ω ^ M , L , K = M ω ^ L , K + L ω ^ K , M + K ω ^ M , L = C E M , L , K + C E L , K , M + C E K , M , L + g K E M , L + g M E L , K + g L E K , M .
Moreover, we know that ( , g ) is Codazzi-coupled, then C is totally symetric [4]. Using ( , E ) being Codazzi-coupled and d ω ^ being totally skew-symetric, we obtain
d ω ^ K , L , M d ω ^ M , L , K = 0 2 d ω ^ K , L , M = 0 d ω ^ K , L , M = 0 .
This gives a result. □

4. E Parallel Affine Connections

Let ∇ be an affine connection and E be an electromagnetic-type structure. If
K E L = E K L
is satisfied for any vector fields K , L on M k , ∇ is named an E parallel affine connection on M k .
Proposition 8.
Letbe an affine connection on the metric E 4 = I manifold M k , E , g , ω ^ . * and assign, respectively, g conjugation and ω ^ conjugation ofon M k . In that case,
(i) 
* is E parallel if and only if is so.
(ii) 
is E parallel if and only if is so.
Proof. (i) From the definitions of g conjugation and E parallel, it is obtained that
ω ^ K * E L E K * L , M = ω ^ K * E L , M ω ^ E K * L , M = g E K * E L , M g E E K * L , M = g K * E L , E M + g E K * L , E M = g E M , K * E L g E 2 M , K * L = K g E M , E L + g K E M , E L K g E 2 M , L + g K E 2 M , L = K g E M , E L + g K E M , E L + K g E M , E L + g K E 2 M , L = g E L , K E M + g K E E M , L + g E K E M , L = g E L , K E M + g K E E M , L g K E M , E L = g K E E M , L .
Thus, K * E L = E K * L if and only if K E M = E K M .
(ii) Firstly, we have
ω ^ E K , L = g E E K , L = g E K , E L = ω ^ K , E L .
From the definitions of ω ^ conjugation and the above equation, we obtain
ω ^ K E L E K L , M = ω ^ K E L , M ω ^ E K L , M = ω ^ M , K E L + ω ^ M , E K L = ω ^ M , K E L ω ^ E M , K L = K ω ^ M , E L + ω ^ K M , E L K ω ^ E M , L + ω ^ K E M , L = K ω ^ M , E L + ω ^ K M , E L + K ω ^ M , E L + ω ^ K E M , L = ω ^ E L , K M ω ^ L , K E M = ω ^ L , E K M ω ^ L , K E M ,
which completes the proof. □
Proposition 9.
Letbe an E parallel affine connection on the metric E 4 = I manifold M k , E , g , ω ^ . * and assign respectively g conjugation and ω ^ conjugation ofon M k . The followings are provided:
(i) 
= * ;
(ii) 
, ω ^ is a Codazzi-coupled if and only if , g is so.
Proof. (i) From the definitions of g conjugation, ω ^ conjugation and E parallel, we obtain
M ω ^ K , L = ω ^ M K , L + ω ^ K , M L M g E K , L = g E M K , L + g E K , M L M g E K , L g E M K , L = g E K , M L M g E K , L g M E K , L = g E K , M L g E K , M * L = g E K , M L M * L = M L * = .
(ii) From the Codazzi equation, we have
M ω ^ K , L = K ω ^ M , L M ω ^ K , L ω ^ M K , L ω ^ K , M L = K ω ^ M , L ω ^ K M , L ω ^ M , K L M g E K , L g E M K , L g E K , M L = K g E M , L g E K M , L g E M , K L
M g K , E L + g M K , E L + g M , E M L = K g M , E L + g K M , E L + g M , E K L M g K , E L + g M K , E L + g K , M E L = K g M , E L + g K M , E L + g M , K E L M g K , E L = K g M , E L ,
which gives the proof. □
To give results about statistical structures, for a moment, we shall assume a torsion-free E parallel affine connection ∇.
Theorem 3.
Letbe a torsion-free E parallel affine connection on the metric E 4 = I manifold M k , E , g , ω ^ , by * and we assign respectively g conjugation and ω ^ conjugation of ∇ on M k . If ( , ω ^ ) is a Codazzi-coupled, the followings are provided:
(i) 
( * , g ) is a statistical structure;
(ii) 
, g is a statistical structure.
Proof. 
The proof is obtained from Proposition 9 and Proposition 2.10 in [4]. □
Theorem 4.
Letbe a torsion-free E parallel affine connection on the metric E 4 = I manifold M k , E , g , ω ^ . * assigns the g conjugation ofon M k . In the case that ( , ω ^ ) being a Codazzi coupled, * , ω ^ is a Codazzi-coupled if and only if E M g K , L = M g E K , L .
Proof. 
Let ∇ be a torsion-free E parallel affine connection and ( , ω ^ ) be a Codazzi coupled. Then, from Proposition 9, we also have that ( , g ) is Codazzi-coupled. Moreover, from Proposition 8, we can say that * is E parallel. Using all the above, we obtain
M * ω ^ K , L K * ω ^ M , L = M ω ^ K , L ω ^ M * K , L ω ^ K , M * L K ω ^ M , L + ω ^ K * M , L + ω ^ M , K * L = M g E K , L g E M * K , L g E K , M * L K g E M , L + g E K * M , L + g E M , K * L = g M * E K , L + g E K , M L g E M * K , L g E K , M * L g K * E M , L g E M , K L + g E K * M , L + g E M , K * L = g M * E K , L + g E M * K , L + g E K , M L g E M * K , L g E K , M * L g K * E M , L g E K * M , L g E M , K L + g E K * M , L + g E M , K * L = g E K , M L g E K , M * L g E M , K L + g E M , K * L = g E K , M L M g E K , L + g M E K , L g E M , K L + K g E M , L g K E M , L = M g E K , L + K g E M , L = M g E K , L + E M g K , L .

Author Contributions

Resources, S.T. and A.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mishra, R.S. Structures in electromagnetic field. Tensor N.S. 1976, 30, 145–156. [Google Scholar]
  2. Hlavaty, V. Geometry of Einstein’s Unified Field Theory. P. Noordhoff. 1958. Available online: https://www.amazon.com/Geometry-Einsteins-Unified-Field-Theory/dp/1298500257 (accessed on 6 June 2022).
  3. Gadea, P.M.A.; Montesinos, A. Spaces of constant para-holomorphic sectional curvature. Pac. J. Math. 1989, 136, 85–101. [Google Scholar] [CrossRef] [Green Version]
  4. Fei, T.; Zhang, J. Interaction of Codazzi couplings with (para-)Kähler geometry. Result Math. 2017, 72, 2037–2056. [Google Scholar] [CrossRef]
  5. Gezer, A.; Cakicioglu, H. Notes concerning Codazzi pairs on almost anti-Hermitian manifolds. Appl. Math. J. Chin. Univ. Ser. B, 2022; to appear. [Google Scholar]
  6. Schwenk-Schellschmidt, A.; Simon, U. Codazzi-equivalent affine connections. Result Math. 2009, 56, 211–229. [Google Scholar] [CrossRef]
  7. Amari, S.; Nagaoka, H. Method of information geometry. In Amer. Math. Soc.; Oxford University Press: Providence, RI, USA, 2000. [Google Scholar]
  8. Nomizu, K.; Sasaki, T. Affine Differential Geometry. In Geometry of Affine Immersions Vol. 111 of Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
  9. Nomizu, K.; Simon, U. Notes on conjugate connections. In Geometry and Topology of Submanifolds IV; Dillen, F., Verstraelen, L., Eds.; World Scientific Publishing: River Edge, NJ, USA, 1992; pp. 152–173. [Google Scholar]
  10. Lauritzen, S.L. Statistical manifolds. In Differential Geometry in Statistical Inferences; IMS Lecture Notes—Monograph Series, Volume 10; Hayward: Berkeley Heights, NJ, USA, 1987; pp. 96–163. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Turanli, S.; Gezer, A. On Codazzi Couplings on the Metric (E4 = I)−Manifolds. Symmetry 2022, 14, 1346. https://doi.org/10.3390/sym14071346

AMA Style

Turanli S, Gezer A. On Codazzi Couplings on the Metric (E4 = I)−Manifolds. Symmetry. 2022; 14(7):1346. https://doi.org/10.3390/sym14071346

Chicago/Turabian Style

Turanli, Sibel, and Aydin Gezer. 2022. "On Codazzi Couplings on the Metric (E4 = I)−Manifolds" Symmetry 14, no. 7: 1346. https://doi.org/10.3390/sym14071346

APA Style

Turanli, S., & Gezer, A. (2022). On Codazzi Couplings on the Metric (E4 = I)−Manifolds. Symmetry, 14(7), 1346. https://doi.org/10.3390/sym14071346

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop