Damage-Induced Mutation Clustering in Gram-Positive Bacteria: Preliminary Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Mutagenesis
2.2. DNA Extraction
2.3. Ion Torrent Sequencing and Mutation Calling
3. Results
4. Discussion
Nonrandom Mutation Distribution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cairns, J.; Overbaugh, J.; Miller, S. The origin of mutants. Nature 1988, 335, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Shee, C.; Gibson, J.L.; Rosenberg, S.M. Two Mechanisms Produce Mutation Hotspots at DNA Breaks in Escherichia coli. Cell Rep. 2012, 2, 714–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, A.; Dapprich, J.; Kunkel, M.; Gresham, D.; Pratt, S.C.; Dunham, M.J. Global mapping of transposon location. PLoS Genet. 2006, 2, e212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodarzi, H.; Hottes, A.K.; Tavazoie, S. Global discovery of adaptive mutations. Nat. Methods 2009, 6, 581–583. [Google Scholar] [CrossRef]
- Hall, B.G. Selection-induced mutations. Curr. Opin. Genet. Dev. 1992, 2, 943–946. [Google Scholar] [CrossRef]
- Heffner, C.S.; Herbert Pratt, C.; Babiuk, R.P.; Sharma, Y.; Rockwood, S.F.; Donahue, L.R.; Eppig, J.T.; Murray, S.A. Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat. Commun. 2012, 3, 1218. [Google Scholar] [CrossRef] [Green Version]
- Lutsenko, E.; Bhagwat, A.S. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. Mutat. Res. 1999, 437, 11–20. [Google Scholar] [CrossRef]
- Burch, L.H.; Yang, Y.; Sterling, J.F.; Roberts, S.A.; Chao, F.G.; Xu, H.; Zhang, L.; Walsh, J.; Resnick, M.A.; Mieczkowski, P.A.; et al. Damage-induced localized hypermutability. Cell Cycle 2011, 10, 1073–1085. [Google Scholar] [CrossRef] [Green Version]
- Wyrick, J.J.; Roberts, S.A. Genomic approaches to DNA repair and mutagenesis. DNA Repair 2015, 36, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.; Gordenin, D.A. Clusters of Multiple Mutations: Incidence and Molecular Mechanisms. Annu. Rev. Genet. 2015, 49, 243–267. [Google Scholar] [CrossRef] [Green Version]
- Parkhomchuk, D.; Amstislavskiy, V.; Soldatov, A.; Ogryzko, V. Use of high throughput sequencing to observe genome dynamics at a single cell level. Proc. Natl. Acad. Sci. USA 2009, 106, 20830–20835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.M.; Fu-Liu, C.S. Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram–negative bacterial pathogens? Tuberculosis 2002, 82, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Klotoe, B.J.; Kacimi, S.; Costa-Conceicão, E.; Gomes, H.M.; Barcellos, R.B.; Panaiotov, S.; Haj Slimene, D.; Sikhayeva, N.; Sengstake, S.; Schuitema, A.R.; et al. Genomic characterization of MDR/XDR-TB in Kazakhstan by a combination of high-throughput methods predominantly shows the ongoing transmission of L2/Beijing 94-32 central Asian/Russian clusters. BMC Infect. Dis. 2019, 19, 553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, J.; Chewapreecha, C.; Bentley, S.D. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol. 2012, 7, 1283–1296. [Google Scholar] [CrossRef] [Green Version]
- Brito, P.H.; Chevreux, B.; Serra, C.R.; Schyns, G.; Henriques, A.O.; Pereira-Leal, J.B. Genetic Competence Drives Genome Diversity in Bacillus subtilis. Genome Biol. Evol. 2017, 10, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bai, X.; Fan, R.; Wang, Z. Deviation-Sparse Fuzzy C-Means With Neighbor Information Constraint. IEEE Trans. Fuzzy Syst. 2019, 27, 185–199. [Google Scholar] [CrossRef]
- Cupples, C.G.; Miller, J.H. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc. Natl. Acad. Sci. USA 1989, 86, 5345–5349. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.H. A Short Course in Bacterial Genetics—A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor 1992; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1992; p. 456. ISBN 0-87969-349-5. [Google Scholar]
- Chomczynski, P.; Mackey, K.; Drews, R.; Wilfinger, W. DNAzol®: A Reagent for the Rapid Isolation of Genomic DNA. BioTechniques 1997, 22, 550–553. [Google Scholar] [CrossRef]
- Shevtsov, A.; Tarlykov, P.; Zholdybayeva, E.; Momynkulov, D.; Sarsenova, A.; Moldagulova, N.; Momynaliev, K. Draft Genome Sequence of Rhodococcus erythropolis DN1, a Crude Oil Biodegrader. Genome Announc. 2013, 1, e00846-13. [Google Scholar] [CrossRef] [Green Version]
- Rye, P.T.; Delaney, J.C.; Netirojjanakul, C.; Sun, D.X.; Liu, J.Z.; Essigmann, J.M. Mismatch repair proteins collaborate with methyltransferases in the repair of O(6)-methylguanine. DNA Repair 2008, 7, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Sezonov, G.; Joseleau-Petit, D.; D’Ari, R. Escherichia coli Physiology in Luria-Bertani Broth. J. Bacteriol. 2007, 189, 8746–8749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Total Number of SNPs | Number of G-to-A Transitions | Number of C-to-T Transitions | Number of T-to-A Transitions | Number of C-to-G Transitions | Number of C-to-A Transitions | Number of T-to-C Transitions |
---|---|---|---|---|---|---|---|
B. subtilis Control (no EMS) | 2 * | 1 | None | 1 | None | None | None |
B. subtilis colony #1 (+ EMS) | 62 | 43 | 18 | None | 1 | None | None |
B. subtilis colony #3 (+ EMS) | 27 | 12 | 13 | 1 | None | 1 | None |
B. subtilis colony #4 (+ EMS) | 18 | 3 | 13 | 1 | None | None | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugmanova, R.; Ramankulov, Y.; Tarlykov, P. Damage-Induced Mutation Clustering in Gram-Positive Bacteria: Preliminary Data. Symmetry 2022, 14, 1431. https://doi.org/10.3390/sym14071431
Nugmanova R, Ramankulov Y, Tarlykov P. Damage-Induced Mutation Clustering in Gram-Positive Bacteria: Preliminary Data. Symmetry. 2022; 14(7):1431. https://doi.org/10.3390/sym14071431
Chicago/Turabian StyleNugmanova, Raushan, Yerlan Ramankulov, and Pavel Tarlykov. 2022. "Damage-Induced Mutation Clustering in Gram-Positive Bacteria: Preliminary Data" Symmetry 14, no. 7: 1431. https://doi.org/10.3390/sym14071431
APA StyleNugmanova, R., Ramankulov, Y., & Tarlykov, P. (2022). Damage-Induced Mutation Clustering in Gram-Positive Bacteria: Preliminary Data. Symmetry, 14(7), 1431. https://doi.org/10.3390/sym14071431