On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities
Abstract
:1. Introduction
2. Lemmas
2.1. Preliminaries
2.2. Extensions of the Dragomir—Furuta Inequality
3. Numerical Radius Inequalities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustafson, K.E.; Rao, D.K. Numerical Range; Springer: New York, NY, USA, 1996. [Google Scholar]
- Chien, M.-T.; Gau, H.-L.; Li, C.-K.; Tsai, M.-C.; Wang, K.-Z. Product of operators and numerical range. Linear Multilinear Algebra 2016, 64, 58–67. [Google Scholar] [CrossRef]
- Chien, M.-T.; Ko, C.-L.; Nakazato, H. On the numerical ranges of matrix products. Appl. Math. Lett. 2010, 23, 732–737. [Google Scholar] [CrossRef]
- Li, C.-K.; Tsai, M.-C.; Wang, K.-Z.; Wong, N.-C. The spectrum of the product of operators, and the product of their numerical ranges. Linear Algebra Appl. 2015, 469, 487–499. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis; Springer: New York, NY, USA, 1997. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Kittaneh, F. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. 2003, 158, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Stud. Math. 2005, 168, 73–80. Available online: https://eudml.org/doc/284514 (accessed on 1 June 2022). [CrossRef] [Green Version]
- El-Haddad, M.; Kittaneh, F. Numerical radius inequalities for Hilbert space operators. II. Stud. Math. 2007, 182, 133–140. [Google Scholar] [CrossRef]
- Alomari, M.W. On the Davis—Wielandt radius inequalities of Hilbert space operators. Linear Multilinear Algebra 2022. [Google Scholar] [CrossRef]
- Alomari, M.W.; Shebrawi, K.; Chesneau, C. Some generalized Euclidean operator radius inequalities. Axioms 2022, 11, 285. [Google Scholar] [CrossRef]
- Yamazaki, T. On upper and lower bounds of the numerical radius and an equality condition. Stud. Math. 2007, 178, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Some inequalities for the norm and the numerical radius of linear operator in Hilbert spaces. Tamkang J. Math. 2008, 39, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sattari, M.; Moslehian, M.S.; Yamazaki, T. Some genaralized numerical radius inequalities for Hilbert space operators. Linear Algebra Appl. 2014, 470, 1–12. [Google Scholar]
- Alomari, M.W. On the generalized mixed Schwarz inequality. PIMM 2020, 46, 3–15. [Google Scholar] [CrossRef]
- Alomari, M.W. Refinements of some numerical radius inequalities for Hilbert space operators. Linear Multilinear Algebra 2021, 69, 1208–1223. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.W. Numerical radius inequalities for Hilbert space operators. Complex Anal. Oper. Theory 2021, 15, 111. Available online: https://arxiv.org/abs/1810.05710 (accessed on 1 June 2022). [CrossRef]
- Alomari, M.W.; Chesneau, C. Bounding the zeros of polynomials using the Frobenius companion matrix partitioned by the Cartesian decomposition. Algorithms 2022, 15, 184. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces; Briefs in Mathematics; Springer: Cham, Switzerland, 2013. [Google Scholar]
- Dragomir, S.S. Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 2009, 5, 269–278. [Google Scholar]
- Dragomir, S.S. Some inequalities generalizing Kato’s and Furuta’s results. Filomat 2014, 28, 179–195. [Google Scholar] [CrossRef]
- Reid, W. Symmetrizable completely continuous linear tarnsformations in Hilbert space. Duke Math. 1951, 18, 41–56. [Google Scholar] [CrossRef]
- Halmos, P.R. A Hilbert Space Problem Book; Van Nostrand Company, Inc.: Princeton, NJ, USA, 1967. [Google Scholar]
- Kato, T. Notes on some inequalities for linear operators. Math. Ann. 1952, 125, 208–212. [Google Scholar] [CrossRef]
- Kittaneh, F. Notes on some inequalities for Hilbert Space operators. Publ. Res. Inst. Math. Sci. 1988, 24, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Furuta, T. An extension of the Heinz—Kato theorem. Proc. Am. Math. Soc. 1994, 120, 785–787. [Google Scholar] [CrossRef]
- Kittaneh, F.; Manasrah, Y. Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 2010, 361, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Al-Manasrah, Y.; Kittaneh, F. A generalization of two refined Young inequalities. Positivity 2015, 19, 757–768. [Google Scholar] [CrossRef]
- Moradi, H.R.; Furuichi, S.; Mitroi, F.C.; Naseri, R. An extension of Jensen’s operator inequality and its application to Young inequality. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. 2019, 113, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Pećarixcx, J.; Furuta, T.; Hot, J.M.; Seo, Y. Mond-Pečarić Method in Operator Inequalities; Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monographs in Inequalities; Element: Zagreb, Croatia, 2005. [Google Scholar]
- Aujla, J.; Silva, F. Weak majorization inequalities and convex functions. Linear Algebra Appl. 2003, 369, 217–233. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, M.W.; Bercu, G.; Chesneau, C. On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities. Symmetry 2022, 14, 1432. https://doi.org/10.3390/sym14071432
Alomari MW, Bercu G, Chesneau C. On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities. Symmetry. 2022; 14(7):1432. https://doi.org/10.3390/sym14071432
Chicago/Turabian StyleAlomari, Mohammad W., Gabriel Bercu, and Christophe Chesneau. 2022. "On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities" Symmetry 14, no. 7: 1432. https://doi.org/10.3390/sym14071432
APA StyleAlomari, M. W., Bercu, G., & Chesneau, C. (2022). On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities. Symmetry, 14(7), 1432. https://doi.org/10.3390/sym14071432