Implementation of Two-Mode Gaussian States Whose Covariance Matrix Has the Standard Form
Abstract
:1. Introduction
2. Gaussian Unitaries and Gaussian States
2.1. Degrees of Freedom
2.2. Gaussian States
2.3. Gaussian States in the Two-Mode
3. Implementation with Primitive Components
Implementation in the Two-Mode
4. Evaluation of the Covariance Matrix
4.1. The Symplectic Matrix
4.2. The Covariance Matrix (cm)
5. The Standard Form of the Covariance Matrix
- For every two-mode Gaussian state having the ordinary CM , it is possible to obtain the corresponding standard form from with a local symplectic transformation .
- The standard form contains all the relevant information on the Gaussian state, so that the transformation may be considered as the removal of the redundancy in .
5.1. Properties of Symplectic Invariants
Meaning of the CM Entries According to Probability Theory
- are uncorrelated with the same variance ;
- are uncorrelated with the same variance ;
- have cross–covariance and then normalized covariance;
- have cross–covariance and then normalized covariance;
- , , and are uncorrelated pairs.
5.2. The Correlations from the Ordinary Cm
5.3. The Standard Form Ii (Sf–Ii)
6. Gallery of Covariance Matrices and Classification
- Full SF: is the class obtained by imposing the conditions , .
- Lateral–symmetric SF: is the class in which , .
- Lateral–antiymmetric SF: is the class in which , .
- standard variables:
- standard II variables:
- physical variables:
7. Two Fundamental Cases
7.1. EPR State with Noise
7.2. Cases Obtained by Setting All the Phases to Zero
7.3. Physical Variables from the Standard Variables II
7.4. Physical Variables from the Standard Variables
7.4.1. Thermal Photon Numbers
7.4.2. Squeeze Parameters
7.4.3. BS Parameters
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Solution of the System (39) to (42)
- it is not a limitation to assume that in the beam-splitters
Appendix B. Possible Approaches for the Use of This Theory
References
- Braunstein, S.L.; Van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 2005, 77, 513. [Google Scholar]
- Weedbrook, C.; Pirandola, S.; Garcia-Patron, R.; Cherf, N.J.; Ralf, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian Quantum Information. Rev. Mod. Phys. 2012, 84, 621. [Google Scholar] [CrossRef]
- Babusci, D.; Dattoli, G.; Riciardi, S.; Sabia, E. Mathematical Methods for Physicists; World Scientific Publishing: Singapore, 2020. [Google Scholar]
- Laudenbach, F.; Pacher, C.; Fung, C.-H.F.; Poppe, A.; Peev, M.; Schrenk, B.; Hentschel, M.; Walther, P.; Hübel, H. Continuous-Variable Quantum Key Distribution with Gaussian Modulation—The Theory of Practical Implementations. Adv. Quantum Technol. 2018, 1, 1800011. [Google Scholar] [CrossRef]
- Rosario, P.; Ducuara, A.F.; Susa, C.E. Quantum steering and quantum discord under noisy channels and entanglement swapping. Phys. Lett. A 2022, 440, 128144. [Google Scholar] [CrossRef]
- Adesso, G.; Illuminati, F. Entanglement Sharing: From Qubits to Gaussian States. Int. J. Quantum Inf. 2006, 4, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Han, D.; Wang, N.; Liu, Y.; Hao, S.; Su, X. Experimental demonstration of robustness of Gaussian quantum coherence. Photonics Res. 2021, 9, 1330–1335. [Google Scholar] [CrossRef]
- Simon, R. Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 2000, 84, 2726. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Giedke, G.; Cirac, J.I.; Zoller, P. Inseparability Criterion for Continuous vaiable Systems. Phys. Rev. Lett. 2000, 84, 2722. [Google Scholar] [CrossRef] [Green Version]
- Laurat, J.; Keller, G.; Oliveira-Huguenin, J.A.; Fabre, C.; Coudreau, T.; Serafini, A.; Adesso, G.; Illuminati, F. Entanglement of two-mode Gaussian states: Characterization and experimental production and manipulation. J. Opt. B Quantum Semiclass Opt. 2005, 7, S577–S587. [Google Scholar] [CrossRef] [Green Version]
- Hsiang, J.T.; Hu, B.L. Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations. Entropy 2021, 23, 1544. [Google Scholar] [CrossRef]
- Kim, M.S.; Son, W.; Bužek, V.; Knight, P.L. Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 2002, 65, 032323. [Google Scholar] [CrossRef] [Green Version]
- Makarov, D.N.; Gusarevich, E.S.; Goshev, A.A.; Makarova, K.A.; Kapustin, S.N.; Kharlamova, A.A.; Tsykareva, Y.V. Quantum entanglement and statistics of photons on a beam splitter in the form of coupled waveguides. Sci. Rep. 2021, 11, 10274. [Google Scholar] [CrossRef]
- Ma, X.; Rhodes, W. Multimode squeeze operators and squeezed states. Phys. Rev. A 1990, 41, 4625–4631. [Google Scholar] [CrossRef] [PubMed]
- Scheel, J.; Welsch, D.G. Entanglement generation and degradation by passive optical devices. Phys. Rev. A 2001, 64, 063811-1–11. [Google Scholar]
- Cariolaro, G.; Pierobon, G. Bloch-Messiah reduction of Gaussian unitaries by Takagi factorization. Phys. Rev. A 2016, 94, 062109. [Google Scholar] [CrossRef]
- Cariolaro, G.; Pierobon, G. Implementation of multimode Gaussian unitaries using primitive components. Phys. Rev. A 2018, 98, 032111. [Google Scholar] [CrossRef]
- Bloch, C.; Messiah, A. The canonical form of an antisymmetric tensor and its application to the theory of superconductivity. Nucl. Phys. 1964, 39, 95–106. [Google Scholar] [CrossRef]
- Cariolaro, G.; Pierobon, G. Reexamination of Bloch-Messiah reduction. Phys. Rev. A 2016, 94, 062115. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.J. Matrix Analysis; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar]
- Strocchi, F. Thermal States. In Lecture Notes in Physics; Symmetry Breaking, Springer: Berlin/Heidelberg, Germany, 2008; Volume 732. [Google Scholar]
- Borchers, H.J.; Haag, R.; Schroer, B. The vacuum state in quantum field theory. Nuovo C 1963, 29, 148–162. [Google Scholar] [CrossRef]
- Cariolaro, G.; Corvaja, R.; Miatto, F. Gaussian states: Evaluation of the covariance matrix from the implementation with primitive components. Symmetry 2022, 14, 1286. [Google Scholar] [CrossRef]
- Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [Google Scholar] [CrossRef] [Green Version]
- Serafini, A.; Illuminati, F.; De Siena, S. Symplectic invariants, entropic measures and correlations of Gaussian states. J. Phys. B At. Mol. Opt. Phys. 2004, 37, L21. [Google Scholar] [CrossRef]
Type | Covariance Matrix | Degrees of Fredom |
---|---|---|
general | 10 real variables | |
standard form II | 6 real variables | |
standard form (SF) | 4 real variables | |
SF lateral symmetric | 3 real variables | |
SF lateral antisymmetric | 3 real variables |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cariolaro, G.; Corvaja, R. Implementation of Two-Mode Gaussian States Whose Covariance Matrix Has the Standard Form. Symmetry 2022, 14, 1485. https://doi.org/10.3390/sym14071485
Cariolaro G, Corvaja R. Implementation of Two-Mode Gaussian States Whose Covariance Matrix Has the Standard Form. Symmetry. 2022; 14(7):1485. https://doi.org/10.3390/sym14071485
Chicago/Turabian StyleCariolaro, Gianfranco, and Roberto Corvaja. 2022. "Implementation of Two-Mode Gaussian States Whose Covariance Matrix Has the Standard Form" Symmetry 14, no. 7: 1485. https://doi.org/10.3390/sym14071485
APA StyleCariolaro, G., & Corvaja, R. (2022). Implementation of Two-Mode Gaussian States Whose Covariance Matrix Has the Standard Form. Symmetry, 14(7), 1485. https://doi.org/10.3390/sym14071485