Probability Calculation Method for Shear Stirrup Area of Steel-Reinforced Concrete Symmetry Frame Joint
Abstract
:1. Introduction
2. Inverse Reliability Theory
3. Calculation Method of Shear Stirrup Area
4. Example Verification
5. Application in Engineering
5.1. Function of Frame Joints
5.2. Determination of Target Reliability Index
5.3. Calculation of Shear Stirrup Area
5.4. Sensitivity Analysis of Parameters
- (1)
- Effect of target reliability index on stirrup area
- (2)
- The influence of random variable mean value on stirrup area
- (3)
- The influence of the random variables’ variation coefficient on the stirrups area
- (4)
- The influence of random variables’ probability distribution type on stirrups area
6. Conclusions
- (1)
- When calculating the shear stirrups area of steel-reinforced concrete frame joints, the influence of random parameters should be considered according to the actual situation.
- (2)
- The target reliability index has an important influence on the shear stirrups area of steel-reinforced concrete frame joints. The appropriate target reliability index should be selected according to the importance and safety level of the structure, and then the shear stirrups area of steel-reinforced concrete frame joints can be determined.
- (3)
- Compared with the result of the Monte Carlo method using more than 100,000 iterative times, the proposed method was used only several iterative times achieving the target design parameter of the shear stirrup area of a steel-reinforced concrete symmetry frame joint. The proposed method was recommended to calculate the shear stirrup area of a steel-reinforced concrete symmetry frame joint.
- (4)
- Random variables have an important influence on the shear stirrups area of steel-reinforced concrete frame joints. In the practical engineering design, accurate statistical characteristics of random variables should be determined according to the actual situation, so as to provide data support for reasonably calculating the shear stirrups area of steel-reinforced concrete frame joints.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Wei, Y.; Bai, J.; Wu, G.; Dong, Z. A novel seawater and sea sand concrete filled FRP-carbon steel composite tube column: Concept and behavior. Compos. Struct. 2020, 246, 112421. [Google Scholar] [CrossRef]
- Wei, Y.; Bai, J.; Zhang, Y.; Miao, K.; Zheng, K. Compressive performance of high-strength seawater and sea sand concrete filled circular FRP-steel composite tube columns. Eng. Struct. 2021, 240, 112357. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, K.; Chen, H.; Chen, S.; Ding, M. Experimental study on the creep behavior of recombinant bamboo. J. Renew. Mater. 2020, 8, 251–273. [Google Scholar]
- Zhang, Y.; Wei, Y.; Miao, K.; Li, B. A novel seawater and sea sand concrete-filled FRP-carbon steel composite tube column: Cyclic axial compression behaviour and modelling. Eng. Struct. 2021, 252, 113531. [Google Scholar] [CrossRef]
- Wei, Y.; Tang, S.; Ji, X.; Zhao, K.; Li, G. Stress-strain behavior and model of bamboo scrimber under cyclic axial compression. Eng. Struct. 2020, 209, 110279. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Sun, H. Experimental study on Seismic behavior of full encased steep concrete composite columns. J. Struct. Eng. 2014, 140, 1–10. [Google Scholar] [CrossRef]
- GS20011-2010; Code for Seismic Design of Buildings. China Construction Industry Publication: Beijing, China, 2010.
- Chang, Z.; Yan, C.; Jia, J.; Liu, S.; Duan, L. Shear Bearing Capacity Reliability Analysis of Steel Reinforced Ultra-High Strength Concrete Frame Joints Based on JC Check Point Method. World Earthq. Eng. 2017, 33, 151–157. [Google Scholar]
- Xiao, L.; Yu, X.; Zhong, Y. Shear capacity Reliability analysis of Reinforced Concrete Sandwich Joints. World Seism. Eng. 2014, 3, 63–70. [Google Scholar]
- Bai, G.; Jiang, W.; Zhang, Q. Reliability Analysis of SRC Joints. In Proceedings of the Annual Meeting of China Steel Construction Society Association for Steel-Concrete Composite Structures, Harbin, China, May 1997. [Google Scholar]
- Reid, S.G. Specifications of design criteria based on probabilistic measures of design performance. Struct. Saf. 2002, 24, 333–345. [Google Scholar] [CrossRef]
- Tai, K.; Ding, D. A new leap in bridge construction in China. J. Build. Sci. Eng. 2006, 23, 30–40. [Google Scholar]
- Der Kiureghian, A.; Zhang, Y.; Li, C.C. Inverse reliability problem. J. Eng. Mech. ASCE 1994, 120, 1154–1159. [Google Scholar] [CrossRef]
- Li, H.; Foschi, R.O. An inverse reliability method and application. Struct. Saf. 1998, 20, 257–270. [Google Scholar] [CrossRef]
- Yan, C. Seismic Behavior of Steel Reinforced Ultra-High Strength Concrete Frame Joints; Dalian University of Technology: Dalian, China, 2009. [Google Scholar]
- JGJ138-001; Technical Specification for Steel Reinforced Concrete Structures. China Construction Industry Press: Beijing, China, 2002.
Iteration Times | Results in the Literature [14] | Results in This Paper | ||
---|---|---|---|---|
1 | 0.150000 | 1.56751 | 0.150000 | 1.56751 |
2 | 0.377286 | 1.86782 | 0.200000 | 1.74562 |
3 | 0.373484 | 1.93275 | 0.320504 | 1.81672 |
4 | 0.373421 | 1.97483 | 0.356061 | 1.91827 |
5 | 0.372946 | 1.98782 | 0.371120 | 1.96782 |
6 | 0.372609 | 1.99874 | 0.372131 | 1.98782 |
7 | 0.372553 | 1.99999 | 0.372498 | 2.00000 |
Random Variables | Distribution Types | Station Parameter μ | Scale Parameter σ | Coefficient of Variation σ/μ |
---|---|---|---|---|
Normal distribution | 1 | 0.01 | 0.01 | |
Normal distribution | 1 | 0.01 | 0.01 | |
Normal distribution | 1 | 0.02 | 0.02 | |
Normal distribution | 1 | 0.05 | 0.05 | |
Normal distribution | 1 | 0.05 | 0.05 | |
Normal distribution | 1 | 0.07 | 0.07 | |
Normal distribution | 0.85 | 0.026 | 0.03 | |
Normal distribution | 1 | 0.014 | 0.014 | |
Normal distribution | 1.21 | 0.097 | 0.08 | |
Normal distribution | 1.15 | 0.092 | 0.08 | |
Normal distribution | 1.08 | 0.086 | 0.08 | |
Normal distribution | 1.060 | 0.074 | 0.07 | |
Extreme I distribution | 0.860 | 0.198 | 0.23 |
Method | Proposed Method | Forward Reliability | Monte Carlo |
---|---|---|---|
Iterative times | 6 | 13 | More than 100,000 |
Shear stirrup area (mm2) | 663 | 665 | 664 |
Target reliability | At the same time | Trial and error | No |
Target reliability index | 4.2 | 3.7 | 3.2 |
Stirrup area | 702 mm2 | 663 mm2 | 619 mm2 |
Random Variables | Mean Value | ||
---|---|---|---|
0.9 | 1.0 | 1.1 | |
674 | 663 | 659 | |
674 | 663 | 659 | |
682 | 663 | 647 | |
671 | 663 | 654 | |
671 | 663 | 654 | |
603 | 663 | 729 | |
647 | 663 | 682 | |
729 | 663 | 603 | |
729 | 663 | 603 | |
674 | 663 | 659 | |
671 | 663 | 654 | |
655 | 663 | 671 | |
655 | 663 | 671 |
Random Variables | Variation Coefficient | ||
---|---|---|---|
0.5 | 1.0 | 2.0 | |
692 | 663 | 628 | |
694 | 663 | 626 | |
688 | 663 | 639 | |
674 | 663 | 651 | |
686 | 663 | 638 | |
677 | 663 | 650 | |
669 | 663 | 658 | |
699 | 663 | 621 | |
683 | 663 | 641 | |
693 | 663 | 627 | |
679 | 663 | 649 | |
681 | 663 | 646 | |
685 | 663 | 642 |
Distribution Types of Random Variables | Different Distribution | All Normal Distribution | All Logarithmic Normal Distribution | All Extreme I Distribution |
---|---|---|---|---|
Stirrup area | 663 | 678 | 639 | 601 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Dong, F. Probability Calculation Method for Shear Stirrup Area of Steel-Reinforced Concrete Symmetry Frame Joint. Symmetry 2022, 14, 1521. https://doi.org/10.3390/sym14081521
Yu Z, Dong F. Probability Calculation Method for Shear Stirrup Area of Steel-Reinforced Concrete Symmetry Frame Joint. Symmetry. 2022; 14(8):1521. https://doi.org/10.3390/sym14081521
Chicago/Turabian StyleYu, Zinan, and Fenghui Dong. 2022. "Probability Calculation Method for Shear Stirrup Area of Steel-Reinforced Concrete Symmetry Frame Joint" Symmetry 14, no. 8: 1521. https://doi.org/10.3390/sym14081521
APA StyleYu, Z., & Dong, F. (2022). Probability Calculation Method for Shear Stirrup Area of Steel-Reinforced Concrete Symmetry Frame Joint. Symmetry, 14(8), 1521. https://doi.org/10.3390/sym14081521